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Abstract

Partially observable Markov decision processes (POMDPs) are a well studied paradigm
for programming autonomous robots, where the robot sequentially chooses actions to
achieve long term goals efficiently. Unfortunately, for real world robots and other simi-
lar domains, the uncertain outcomes of the actions and the fact that the true world state
may not be completely observable make learning of models of the world extremely difficult,
and using them algorithmically infeasible. In this paper we show that learning POMDP
models and planning with them can become significantly easier when we incorporate into
our algorithms the notions of spatial and temporal abstraction. We demonstrate the supe-
riority of our algorithms by comparing them with previous flat approaches for large scale
robot navigation 1.

1. This work was supported in part by NASA award # NCC2-1237 and in part by DARPA contract #
DABT63-99-1-0012
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1. Introduction

Modeling an agent and its interaction with its environment through actions, perceptions
and rewards is a unifying framework for AI (Russell & Norvig, 2003). The fundamental
problem faced by all intelligent agents (e.g., physical systems, including robots, softbots,
and automated manufacturing systems) is the following: how should an agent choose actions
based on its perceptions such that it achieves its long-term goals? One way to formalize this
planning problem is to design the agent so that it chooses actions that maximize the long-
term expected reward, where rewards represent desirable states of the world. Formulating
planning as the problem of maximizing long-term expected sum of rewards is a flexible
framework since it prevents agents from acting myopically to pick short-term rewarding
actions over decisions that are more rewarding on the long run. Markov decision processes
(MDPs) are a widely adopted paradigm for modeling planning problems as maximizing
long-term rewards (Sutton & Barto, 1998).

An MDP is specified by a set of states, a set of actions that represent transitions between
states, and a reward function on states (or state action pairs). Knowledge of the current
state is sufficient for predicting the distribution over the next state (the Markov property).
In turn, the Markov assumption leads to dynamic programming methods for computing
optimal policies. Optimal policies are mappings from states to actions, which maximize the
long-term reward received by the agent.

A partially observable MDP (POMDP) models the situation where agent’s perceptions
do not directly reveal the state of the world. However, a probability distribution over the
hidden states of the POMDP model (called the “belief state”) turns out to be a sufficient
information state, in that it implicitly represents histories of observations and actions that
map to the same belief state given some initial belief state (Aström, 1965). Belief states
satisfy the Markov assumption in that knowledge of the previous belief state, action taken,
and observation perceived is sufficient for computing the current belief state. Unfortunately,
even though the Markov assumption is satisfied in belief space, computing optimal decisions
from belief states is computationally intractable, since the number of belief states is infinite.

Learning the parameters of POMDP models, state-transition and state-observation func-
tions, is also a difficult problem. The learning difficulty is once more a consequence of partial
observability, since the agent does not have direct access to the states. A general learning
method for POMDPs is the Baum-Welch algorithm (Baum & Sell, 1968), (Rabiner, 1989),
which is an expectation maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).
Unfortunately learning flat POMDP models for real domains, using the Baum-Welch algo-
rithm, becomes increasingly harder as the domains get larger, mainly due to local optima
(Koenig & Simmons, 1998), (Shatkay, 1998).

In this paper we investigate how spatial and temporal abstractions can make learning
and planning in POMDPs practical for large scale domains. The contributions of this work
can be summarized as follows:

• We formally introduce and describe the hierarchical partially observable Markov deci-
sion process model (H-POMDP) (Theocharous, Rohanimanesh, & Mahadevan, 2001),
(Theocharous, 2002). This model is derived from the hierarchical hidden Markov
model with the addition of actions and rewards. Unlike flat partially observable
Markov decision process models, it provides both spatial and temporal abstraction.
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The abstraction is achieved by low resolution abstract states, which group together
finer resolution states in a tree-like fashion.

• We derive an EM algorithm for learning the parameters of H-POMDPs. The algorithm
runs in time linear in the number of states but cubic in the length of the training
sequences. It is presented in Section 4 and the empirical results are described in
Section 7.

• To avoid the cubic time complexity we introduce two approximate training methods
which take advantage of short-length training sequences. In the first method, which
we call selective-training, only selected parts of an overall H-POMDP are allowed to
be trained for a given training sequence. In the second method, which we call reuse-
training, submodels of an H-POMDP model are first trained separately and then
reused in the overall model. Both algorithms are described in Section 4 and their
empirical evaluation is described in Section 7.

• We explore the advantages of representing H-POMDPs as dynamic Bayesian networks
(DBNs). Representing H-POMDPs as DBNS allows us to train them in linear time
with respect to the length of training sequences but quadratic time with respect to the
number of states. The DBN formulation provides extensions, such as parameter tying
and factoring of variables, which further reduces the time and sample complexity. The
DBN representation of H-POMDPs is described in Section 3 and the experiments in
Section 7.2.

• We derive two planning and execution algorithms for approximating the optimal policy
in a given H-POMDP. The planning and execution algorithms combine hierarchical
methods for solving Markov decision processes, such as the options framework (Sutton,
Precup, & Singh, 1999), with approximate flat POMDP solutions (Koenig & Simmons,
1998) (Section 5.1).

• We describe a reinforcement learning algorithm, which learns from sample trajectories
about what subspace of the belief space is typically inhabited by the process and how
to choose actions. When we add macro-actions to the problem, the algorithm considers
an even smaller part of the belief space, learns POMDP policies faster, and can do
information gathering more efficiently (Section 5.2).

• We conduct a detailed experimental study of the learning algorithms for indoor robot
navigation. Experiments are presented for various large-scale models both in simula-
tion and on a real robot platform. The experiments demonstrate that our learning
algorithms can efficiently improve initial H-POMDP models which results in better
robot localization (Section 7). Additionally, we compare our learned models with
equivalent flat POMDP models that are trained with the same data. Our approxi-
mate training methods converge faster than standard EM procedures for flat POMDP
models. When the learned H-POMDP models are converted to flat, they give better
robot localization than the flat POMDP models that are trained with the standard
flat EM algorithm for POMDPs (Section 7).
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• We apply the planning algorithms to indoor robot navigation, both in simulation and
in the real world. Our algorithms take the robot to any environment state starting
from no positional knowledge (uniform initial belief state). In comparison with flat
POMDP heuristics, our algorithms compute plans faster, and use a smaller number
of steps in executing navigation tasks (Section 7.4). The reinforcement learning al-
gorithm we introduce learns to explicitly reason about macro-actions in belief-states
and as a result exhibits information gathering behavior (Section 7.5).

2. Hierarchical models

Hierarchy and abstraction have long been viewed as necessary to scale learning and planning
methods to large domains. The goal of hierarchical planners is to simplify the search and
reasoning process by finding abstract solutions at higher levels where the details are not
computationally overwhelming, and then refining them. For example, a classical logic-based
planner that uses spatial abstraction is ABSTRIPS (Sacerdoti, 1974), while a classical
logic-based planner that uses temporal abstraction, in the form of hierarchical plans, is
NOAH (Sacerdoti, 1975). Such systems however, do not address uncertainty or partial
observability. In this paper we are investigating spatial and temporal abstraction, in terms
of learning and planning, in the presence of uncertainty and partial observability. We show
that in sequential decision making tasks under uncertainty, state and temporal abstractions
play a larger role than simply reducing computational complexity. They help in reducing
uncertainty and partial observability, which are the major obstacles in solving such tasks.

In spatial abstraction, finer grained adjacent states are grouped into higher level ab-
stract states. Our approach is built on the assumption that in many real world domains
uncertainty at an abstract level is less than uncertainty at a primitive level. Mathemat-
ically however, abstract states do not always reduce uncertainty. For example, if there
are four states s1, s2, s3, s4 with probability distribution {0.5, 0.0, 0.5, 0.0} and we group
adjacent states s1, s2 into an abstract state A and adjacent states s3, s4 into an abstract
state B, then the normalized entropy at the abstract level will be −log(0.5)/log(2), while
at the finer grain level will be −log(0.5)/log(4), where normalized entropy is computed as
−∑S

s=1 p(s)log(p(s))/log(|S|). Our conjecture is that in the presence of sparse connectiv-
ity such situations will not arise. By “sparse connectivity” we mean that a state cannot
transition to all other states but only to its neighbors and in turn the neighbors to their
neighbors. Such sparse connectivity is quite common in the real world and can easily be
visualized in terms of an agent, or even us people moving through physical environments.
For example, when driving in the highway we are uncertain where in the highway we are
but more certain as to which highway. Having more certainty at the higher level can lead
to better estimation of the true state of the agent. This in turn can lead to more informed
learning, easier planning algorithms and robust plan execution.

The problem of partial observability can be reduced even further through temporal
abstraction, where single step primitive actions are combined to form multi-step macro-
actions. In general, any random sequence of actions is not guaranteed to reduce uncertainty,
unless it takes the agent to highly distinctive states in the environment. For example, if
we don’t know where we are in the highway, we may choose to follow a long-term direction
(e.g. go north) until we see a familiar landmark. But even if there are no distinctive
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landmarks, macro-actions could still help in disambiguating perceptually aliased situations.
For example, if we don’t know in which of two highways we are in and both highways look
exactly the same, but we know that one is longer than the other, we can choose to keep
going in the current highway until the distance traveled disambiguates them. Figure 1
demonstrates these intuitions in the context of robot navigation.
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Figure 1: Figure (a) shows two plots of normalized entropy, the “abstract” entropy is at
the level of corridors and junctions, and the “global” entropy at the level of finer
grain locations in the environment. Figure (b) shows the trace of the robot from
START to GOAL. Uncertainty is lower at the abstract level than the global level.
The robot’s ability to execute multi-step actions before the next decision reduces
its location uncertainty significantly. For example, look at the entropy at START
and then at J1, after a “go-down-the-corridor” multi-step action.

In addition to uncertainty reduction, hierarchy has several other practical advantages,
including interpretability, ease of maintenance, and reusability. Reusability can be an im-
portant factor in solving large scale sequential decision-making problems. In learning, we
can separately train the different sub-hierarchies of the complete model and reuse them in
larger, complete hierarchical models. Or, if different sub-hierarchies have the same dynam-
ics, we could simply train one of them and reuse it for all the others. In planning, we can
construct abstract actions available in each abstract state. These can be reused for any
global plan without the need of worrying about the details inside the abstract states.

To mathematically model spatial and temporal abstractions in the context of sequen-
tial decision-making under uncertainty, we borrow from two established models, each one
providing some of the desired properties. The first is a general formalism for hierarchi-
cal control in sequential tasks under uncertainty, namely the framework of semi-Markov
decision processes. The second component is a general model of hierarchical sequential
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processes, the hierarchical hidden Markov model. Combining the two frameworks allows us
to address partial observability, and hierarchical modeling and control. Next we describe
these two fundamental formalisms and other related hierarchical approaches.

2.1 Semi-Markov decision processes

In a Markov decision process at each stage, an agent observes a system’s state s contained in
a finite set S, and executes an action a selected from a finite set, As. The agent receives an
immediate reward having expected value R(s, a) and transitions to the next state s′ with
probability P (s′|s, a). A stationary stochastic policy π specifies that the agent executes
action a with probability π(s, a) whenever it observes state s. For any policy π, V π(s)
denotes the expected infinite-horizon discounted return from s given that the agent uses
policy π. This value function is defined as:

V π(s) = E{rt+1 + γrt+2 + γ2rt+3 + ...|st = s, π},

where st is the state at stage t, rt+1 denotes the reward for acting at stage t and 0 ≤ γ < 1,
denotes the discount factor. The value function can also be defined in terms of state action
pairs. Given a policy π, the value of (s, a),for all s ∈ S and all a ∈ A, denoted Qπ(s, a),
is the expected infinite-horizon discounted return for executing a in state s and thereafter
following π

Qπ(s, a) = E{rt+1 + γrt+2 + γ2rt+3 + ...|st = s, at = a, π}
Value functions based on state-action pairs play an important role for on-line learning
because they allow an agent to learn by sampling, whereas state-based value functions do
not allow model-free learning.

The objective in an MDP is to compute an optimal policy π∗, which returns the maxi-
mum value V ∗(s) for each state. Such computation can be done by dynamic programming
(DP) algorithms which exploit the fact that the value function satisfies the Bellman equa-
tions:

V π(s) =
∑
a∈A

π(s, a)

[
R(s, a) + γ

∑
s′

P (s′|s, a)V π(s′)

]
,

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)

]

and the action value equations:

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)maxa′∈AQ∗(s′, a′).

An example DP algorithm is value iteration, which successively approximates V ∗ as
follows. At each iteration k it updates an approximation Vk of V ∗ by applying the following
operation for each state s:

Vk+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)Vk(s′)

]
.
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Repeated applications of this operation converges to the unique optimal value function V ∗.
An alternative approach to DP is reinforcement learning (RL). One of the most popular

approaches is Q learning (Watkins, 1989), which approximates Q∗ by using the following
update rule:

Qk+1(s, a) = (1 − αk)Qk(s, a) + αk

[
r + γmaxa′∈AQk(s′, a′)

]
,

where a was the action executed in state s, r the immediate reward received and αk a
time-varying learning parameter.

Semi-Markov decision processes are a generalization of MDPs where state transitions
depend not only the state from which a transition takes place, but also the amount of time
that passes between decisions. The amount of time between decisions could be continuous
or discrete. In the continuous time SMDPs decision are made at discrete events (Mahade-
van, Marchalleck, Das, & Gosavi, 1997), (Puterman, 1994). In the discrete-time SMDP
model decisions can only be made at (positive) integer multiples of an underlying time step
(Howard, 1971). In both cases it is usual to treat the system as remaining in the same state
for a random waiting time, at the end of which an instantaneous transitions occurs to the
next state.

Let the random variable τ represent the waiting time for state s when action a is exe-
cuted. The transition probabilities generalize to give the joint probability that a transition
from state s to state s′ occurs after τ steps when action a is executed. We write this joint
probability as P (s′, τ |s, a). The expected immediate reward R(s, a) now gives the amount
of reward expected to accumulate over the waiting time in s given action a. The Bellman
equation for V ∗ becomes:

V ∗(s) = max
a∈A

[
R(s, a) +

∑
s′

γτP (s′, τ |s, a)V ∗(s′)

]
.

Q-learning extends to SMDPs as well. The update rule becomes:

Qk+1(s, a) = (1 − αk)Qk(s, a) + αk

[
r + 1,+γrt+2 + ... + γτ−1rt+τ + γτmaxa′∈AQk(s′, a′)

]
.

The temporal aspect of the SMDP formalism provides the basis for hierarchical control
where temporally extended actions can be composed of sequences of finer time-scale actions.
Some of the popular hierarchical frameworks include options (Sutton et al., 1999), MAXQ
(Dietterich, 2000), and HAMs (Parr, 1998). Here we briefly review the options framework
on which we base our hierarchical planning algorithms.

An option is either a temporally extended course of action (macro-action) or a primitive
action. If an option is a macro-action, then it is a policy over an underlying MDP. Options
consist of three components: a policy π : S ×A → [0, 1], a termination condition β : S+ →
[0, 1], and an initiation set I ⊆ S. An option < I, π, β > can be started from any state
s ∈ I, at which point actions are selected according to policy π until the option terminates
stochastically according to β.

To construct policies among options we first need to define reward and transition models
for the options. The total reward that will be received for executing option o in some state
s is defined as:

ro
s = E{rt+1 + γrt+2 · · · + γk−1rt+k|E(o, s, t)},
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where t+k is the random time at which o terminates, and E(o, s, t) is the event that option
o started at time t. The state transition model is defined as:

Po
ss′ =

∞∑
k=1

p(s′, k)γk,

which is a combination of the probability value p(s′, k) that o terminates in state s′ in k
steps, together with a measure of how delayed the outcome is according to the discount
factor γ. The reward and transition model for options allows us to write the Bellman
equation:

V µ(s) = E{rt+1 + γrt+2 · · · + γk−1rt+k + γkV µ(st+k)|E(µ, s, t)}
= ro

s +
∑
s′

Po
ss′V

µ(s′)

for the value of executing an abstract policy µ at some state s and thus be able to compute
policies over options.

The transition and reward models of options can be learned using an intra-option learn-
ing method (Sutton et al., 1999). We can express the option models using Bellman equations
and then solve the system of linear equations either explicitly, or through dynamic program-
ming (Bellman, 1957), (Bersekas, 1987). The Bellman equation for the reward model is:

ro
s = rπ(s)

s +
∑
s′

Pπ(s)
ss′ (1 − β(s′)ro

s′)

and the Bellman equation for transition model is:

Po
sx =

∑
s′

Pπ(s)
ss′

[
(1 − β(s′))Po

s′x + β(s′)δs′x
]
,

where δs′x = 1 if s′ = x and is 0 otherwise.

2.2 Hierarchical hidden Markov models

Now we describe the second component in our approach, the HHMM. The HHMM (Fine,
Singer, & Tishby, 1998) generalizes the standard hidden Markov model (HMM) (Rabiner,
1989) by allowing hidden states to represent stochastic processes themselves. HHMMs are
tree structured (see Figure 2 with three types of states, production states (leaves of the
tree) which emit observations, internal states which are (unobservable) hidden states that
represent entire stochastic processes, and end-states which are artificial states of the model
that when entered exit the (parent) abstract state they are associated with. Each production
state is associated with an observation vector that maintains distribution functions for
each observation defined for the model. Each internal state is associated with a horizontal
transition matrix and a vertical transition vector. The horizontal transition matrix of an
internal state defines the transition probabilities among its children. The vertical transition
vectors define the probability that an internal state will activate any of its children. Each
internal state is also associated with a single end-state child. The end-states do not produce
observations and cannot be activated through a vertical transition from their parent. The
HHMM is formally defined as a 5 tuple 〈S, T,Π, Z,O〉:
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• S denotes the set of states. The function p(s) denotes the parent of state s. The
function c(s, j) returns the jth child of state s. The end-state child of an abstract
state s is denoted by es. The set of children of a state s is denoted by Cs and the
number of children by |Cs|.

• T s : {Cs − es} × Cs → [0, 1] denotes the horizontal transition functions, defined
separately for each abstract state. A horizontal transition function maps each child
state of s into a probability distribution over the children states of s. We write
T s(c(s, i), c(s, j)) to denote the horizontal transition probability from the ith to the
jth child of state s. As an example, in Figure 2, T s4(s7, s8) = 0.6.

• Πs : {Cs − es} → [0, 1] denotes the vertical transition function for each abstract state
s. This function defines the initial distribution over the children states of state s,
except from the end-state child es. For example, in Figure 2, Πs1(s2) = 0.5.

• Z denotes the set of discrete observations.

• Os : Csproduction → [0, 1] denotes a function that maps every production state (child of
s) to a distribution over the observation set. We write Op(s)(s, z) for the probability of
observing z in state s. Csproduction

is the set of all production states which are children
of s.

Figure 2 shows a graphical representation of an example HHMM. The HHMM produces
observations as follows:

1. If the current node is the root, then it chooses to activate one of its children according
to the vertical transition vector from the root to its children.

2. If the child activated is a production state, it produces an observation according to
an observation probability output vector. It then transitions to another state within
the same level. If the state reached after the transition is the end-state, then control
is returned to the parent of the end-state.

3. If the child is an abstract state then it chooses to activate one of its children. The
abstract state waits until control is returned to it from its child end-state. Then it
transitions to another state within the same level. If the resulting transition is to the
end-state then control is returned to the parent of the abstract state.

2.3 Related multi-resolution hidden Markov models

HHMMs can also be viewed as a degenerate case of stochastic context free grammars
(SCFGs). The generalized hierarchical Baum-Welch algorithm presented in (Fine et al.,
1998) was inspired by the inside-outside algorithm which is an EM type algorithm for
learning the probabilities of SCFG rules (Lari & Young, 1990), (Prescher, 2001). The
inside-outside algorithm is less efficient than the EM algorithm for HHMMs because not
only does it run in cubic time in terms of the length of the training sequence, but also in
cubic time in the number of non-terminal symbols. EM for HHMMs is cubic in time with
respect to the length of the training sequence but linear in the number of non-terminal
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Figure 2: An example hierarchical HMM modeling two adjacent corridors. Only leaves
(production) states (s4, s5, s6, s7, and s8) have associated observations. The
end-states are e1, e2, and e3

symbols. Additionally, the likelihood of observed sequences induced by a SCFG varies dra-
matically with small changes in the parameters of the model. HHMMs differ from SCFGs
in that they allow only for bounded stack depths.

Another way of representing HHMMs is with a special case of Dynamic Bayesian Net-
works (DBNs) (Murphy, 2001). In this paper we extend the H-POMDP model to a DBN
representation which we describe in the next section. Figure 3 shows the DBN represen-
tation of HHMMs and their extension to H-POMDPs. The transformation of HHMMs to
DBNs allows us to train them by applying standard inference techniques in Bayesian nets
such as the junction-tree algorithm. The junction-tree algorithm replaces the expectation
step in the hierarchical Baum-Welch algorithm. The major advantage of using the DBN
representation of HHMMs is that they can be trained in linear time with respect to sequence
length, while the conventional hierarchical Baum-Welch algorithm requires cubic time with
respect to sequence length (Fine et al., 1998). A disadvantage is that it requires quadratic
time with respect to the number of states, while the original algorithm requires linear time
with respect to the number of states. This makes the original algorithm better suited for
larger models and small length training sequences, while the DBN algorithm is suited for
small models and long training sequences.

Another closely related model to HHMMs is the abstract hidden Markov model (AHMM)
(Bui, Venkatesh, & West, 2000), which has been used to model abstract policy recognition.
This is a DBN representation closely related to the options framework (Sutton et al., 1999).
The states however are not fully observable and the model becomes similar to an HHMM. In
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Figure 3: Figure (a) shows the DBN representation of HHMMs and Figure (b) shows the
extension to H-POMDPs

the AHMM framework at each level of abstraction there is a set of abstract actions available.
Plan execution starts from top of the hierarchy where the most abstract level executes an
abstract action. The abstract action may be refined into other abstract actions at the next
lower level of abstraction. At the lowest level only primitive actions are executed, which
terminate after every time step. The DBN representation of the AHMM exhibits many
characteristics which make it similar to HHMMs/H-POMDPs as shown in Figure 4. The
basic differences are the following:

1. In an AHMM there is a global variable representing the world state, which every
transition in the model depends on.

2. Unlike HHMMs where a process over primitive states can take multiple steps before
control is transferred to the calling abstract state, in the AHMM the primitive states
transfer control to the calling process every time step. In general, there are no transi-
tions from lower level states to higher level states, which means that when an abstract
state finishes, control is transferred to the higher level. In effect there are no horizontal
transitions.

3. There is no spatial abstraction. Higher level states share lower level states.

4. The actions (both primitive and policies) depend on state. In H-POMDPs policy
selection is not contingent on the lower-level state.

Embedded hidden Markov models are another special case of the HHMM model, which
were applied to face recognition (Nefian & Hayes, 1999). The basic difference is that they
are always of depth 2 and the number of observations produced by each abstract state is
known in advance. This leads to efficient algorithms for estimating the model parameters.

Another well studied class of multi-resolution models are segment models (Ostendorf,
Digalakis, & Kimball, 1996). In the simplest segment model the self-transitions of abstract
states are eliminated and state duration is modeled explicitly either in a parametric or non-
parametric fashion. The reason is that self transitions induce an exponential duration while
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Figure 4: The figure shows a DBN representation of the AHMM. The semantics of the
variables and conditional independence relations are defined in such a way that
they represent hierarchical policies. These hierarchical policies define mappings
of primitive and hierarchical actions on the states of the model. What makes it
similar to HHMMs is the fact that the states are hidden. These models are used
for hierarchical activity recognition.

explicit durations can be arbitrary. These simple models are also called variable duration
HMMs (Rabiner, 1989) (Levinson, 1986), or hidden semi-Markov models (Russell & Moore,
1985). These models can be thought as special cases of two level HHMMs. Unfortunately,
the computational complexity of training durational HHMMs is O(D2) where D is the
maximum allowed duration (Rabiner, 1989).

Finally, in another related hierarchical POMDP approach, (Pineau, Gordon, & Thrun,
2003) the hierarchy comes from a task-based decomposition rather than a state-based de-
composition. Even though the underlying dynamics of the world are still represented as a
flat POMDP, the model becomes hierarchical based on the solution the authors propose.
The POMDP solution is based on first solving smaller POMDPs. The smaller POMDP
problems are created based on decompositions of the action space.

3. Hierarchical partially observable Markov decision processes

The H-POMDP model can be derived from the HHMM model (Fine et al., 1998) with
the addition of actions and rewards (Theocharous et al., 2001). The H-POMDP model is
formally defined as follows:

• S denotes the set of states. Unlike HHMMs, we have an additional type of state called
entry states.

– Production states which produce observations.

– Exit-states which return control to their parent abstract state when entered.

– Entry-states which activate children of the abstract state that they are associated
with.

12



– Abstract states which group together production, entry, exit, and other abstract
states. Cs

p denotes the production children of abstract state s. Cs
a denotes the

abstract state children of abstract state s. Cs
x denotes the set of exit states which

belong to children abstract states of abstract state s. Cs
n denotes the set of entry

states which belong to children abstract states of abstract state s. Xs denotes
the set of exit states that belong to s and N s denotes the set of entry-states that
belong to abstract state s. p(s) denotes the parent state of s.

• A denotes the set of primitive actions. For example, in robot navigation, the ac-
tions could be go-forward one meter, turn-left 90 degrees, and turn-right 90 degrees.
Primitive actions are only defined over production states.

• T (s′|sx, a) denotes the horizontal transition probabilities for primitive actions. Hori-
zontal transition probabilities are defined for sibling states, or for a child and its par-
ent. The transitions originate at exit-states and terminate at a sibling’s entry-state,
or originate at an exit-state and terminate at the parent’s exit-state. If a production
state is involved then the entry or exit-state is the state itself. More specifically, if s
is an abstract state, sx denotes the current exit state. If s is a production state then
sx refers to the production state itself since there are no exit states for production
states. The resulting state s′ could be the entry-state of some abstract state, an exit
state associated with the parent of s, or some production state.

• V (s′n|sn) denotes the vertical transition probability between a parent and its child. It
originates at an entry state of a parent and terminates at an entry state of a child.
More specifically, it denotes the probability that entry state sn, which belongs to
abstract state s, will activate child state s′. If s′ is an abstract state, s′n is an entry
state of state s′. If s′ is a production state s′n is the state itself.

• Z denote the set of discrete observations.

• O(z|s, a) denotes the probability of observation z in production state s after action a
has been taken.

• R(s, a) denotes an immediate reward function defined over the production states.

Figure 5 shows an example H-POMDP, which can also be transformed into a DBN as
shown in Figure 6. This model differs from the model described by (Murphy & Paskin,
2001) in two basic ways: the presence of action nodes A, and the fact that exit nodes X are
no longer binary. In the navigation example from Figure 5 the exit node Xt can take on 3
possible values, representing no-exit, west-exit and east-exit. If Xt = no-exit, then we make
a horizontal transition at the concrete level, but the abstract state is required to remain the
same. If Xt �= no-exit, then we enter a new abstract state; this abstract state then makes
a vertical transition into a new concrete state. The new concrete state, S1

t , depends on
the new abstract state, S2

t , as well as the previous exit state, Xt−1. More precisely we can
define the conditional probability distributions of each type of node in the DBN depending
on node type: For the abstract nodes,

P (S2
t = s′|S2

t−1 = s,Xt−1 = x,At−1 = a) =
{

δ(s′, s) if x =no-exit
T root(s′x|sx, a) otherwise

,
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Figure 5: An example hierarchical POMDP with two primitive actions, “go-left” indicated
with the dotted arrows and “go-right” indicated with the dashed arrows. This H-
POMDP has two abstract states s1 and s2 and each abstract state has two entry
and two exit states. Only the production states s4, s5, s6, s9, and s10 produce
observations.

where T root(s′x|sx, a) in the state representation of the H-POMDP model defines the tran-
sition probability from abstract state s and exit state x to abstract state s′ and entry state
x, where x defines the type of entry or exit state (east, west). S is the parent of s and s′ in
the state transition model.

For the concrete nodes,

P (S1
t = s′|S1

t−1 = s, S2
t = S,Xt−1 = x,At−1 = a) =

{
T S(s′|s, a) if x =no-exit
V (s′|Sx) otherwise

,

where V (s′|Sx) defines the probability of a vertical transition from abstract state S and
entry state of type x to concrete state s′.

For the exit nodes,

P (Xt = x|S1
t = s, S2

t = S,At = a) = T S(Sx|s, a),

where T S(Sx|s, a) is the transition probability from production state s under abstract state
S to exit from state S of type x.

For the sensor nodes,

P (Ot = z|S1
t = s, S2

t = S,At−1 = a) = OS(z|s, a),
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Figure 6: A 2-level H-POMDP represented as a DBN.

where OS(z|s, a) is the probability of perceiving observation z at the sth child node of state
S after action a.

For a given observation sequence, the final step in the transformation is to assert that
the sequence has finished. Since we do not know which exit state will be used, just that
XT = no-exit, we assign “soft” or “virtual” evidence to the XT node: the local evidence
becomes (0, 0.5, 0.5), which encodes the fact that we can exit by any direction with equal
likelihood, but the no-exit condition is impossible.

Every H-POMDP can be converted to a flat POMDP. The states of the flat POMDP are
the production states of the H-POMDP, and are associated with a global transition matrix
that is calculated from the vertical and horizontal transition matrices of the H-POMDP.
To construct this global transition matrix of the equivalent flat POMDP, for every pair of
states (si, sj), we need to sum up the probabilities of all the paths that will transition the
system from si to sj under some action a. For example, in Figure 5 the transition from
s9 back to itself under the go-left action is not simply 0.1, but rather the summation of
two paths. One path is s9, s9 which gives probability of 0.1, and another path is s9, s2, s9

which gives probability 0.9 × 0.1 × 1.0 = 0.09. Therefore the total probability is 0.19. The
equivalent flat POMDP is shown here in Figure 7.

Converting an H-POMDP to a flat model, however, is not advantageous since we lose
the abstract states, abstract horizontal transitions, and the vertical transitions, which we
can exploit in learning and planning. For example, in model learning the fact that we have
abstract states allows us to initially train submodels independently, and as a result start
training of the whole model from a good initial model. This results in better trained models
since the hierarchical Baum-Welch algorithm is an expectation maximization algorithm and
converges to local log-likelihood maxima depending on the initial model. In planning, we
can use the abstract states to construct abstract belief state representations and also to
construct macro-actions that execute under the abstract states. As a result we can construct
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Figure 7: This is the equivalent flat POMDP of the hierarchical POMDP shown in Figure
5. Converting an H-POMDP to flat model is not advantageous, since we lose the
abstract states and the vertical transitions which we can exploit later in learning
and planning.

faster and more successful plans. The vertical vectors help to compute hierarchical plans in
that they give us the initial relationship between abstract states and their children.

In addition to the lack of the hierarchical structure, inference in the flat POMDP model
will produce different results than in the hierarchical model. The reason is that the proba-
bility that an observation sequence starts from some abstract state S and finishes at the exit
state of some child state sx, will be zero unless the child state is actually able to produce
part of the observation sequence. This concept is illustrated in Figure 8. This property of
the HHMM/H-POMDP models, that the next abstract state cannot be entered unless the
process under the abstract state finishes, allows us to capture relationships between states
that are far apart. Note however, that it is possible to force inference in flat models to
give the same results as in the hierarchical by enforcing the fact that observation sequences
must terminate at particular states (namely the states that have non-zero transitions to
exit-states). Nonetheless, during training, after the first training epoch, inference will not
give the same results due to the fact that flat models do not represent or learn parameters
for abstract horizontal transition, transitions to exit-states and vertical transitions.

ROOT

ROOT

S

HIERARCHICAL EQUIVALENT FLAT

exitentry

Figure 8: For an observation sequence of length 2 the hierarchical likelihood will be zero,
since we need at least three observations to exit the abstract state S. However, the
likelihood in the corresponding flat model will not be zero. This is one advantage
of retaining the hierarchical structure of the model.
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4. Learning hierarchical POMDP models

In this section we describe in detail various algorithms for learning H-POMDPs. In Section
4.1 we describe two exact learning approaches. The first method uses a non-factored state
representation, while the second uses a factored state representation. In Section 4.2 we
describe two heuristic learning approaches. In Section 4.3 we describe an approach for
learning the structure at the abstract level.

4.1 Exact learning algorithms

A hierarchical Baum-Welch algorithm (see Figure 9) for learning the parameters of a hier-
archical POMDP can be defined by extending the hierarchical Baum-Welch algorithm for
HHMMs. The Baum-Welch algorithm is an expectation maximization algorithm that max-
imizes the log likelihood of the model parameters (T ,O, and V ) given observation sequences
Z and actions sequences A.

For the expectation step, the Baum-Welch algorithm estimates two variables, the hor-
izontal variable ξ, and the vertical variable χ. The ξ variable is an estimation of the
probability of a horizontal transition from every state to every other state (both of whom
have the same parent), and for every time index in the training sequence. The χ variable
is an estimation of vertical transition probabilities from every parent state and child, for
every time index in the training sequence.

For the maximization step, the Baum-Welch algorithm estimates the model parameters
by using the frequencies of occurrence of vertical and horizontal transitions (provided by ξ
and χ). For example, to estimate the horizontal transition probability between two states s
and s′ under an action a, the algorithm divides the expected number of times a transition
occurred from s to s′ under action a over the expected number of times a transition occurred
from state s under action a. Next, we describe in detail the expectation and maximization
steps.

A major part of the expectation step is the computation of the “forward” variable α
(similar to flat hidden Markov models):

α(p(s)n, sx, t, t + k) =
P (zt, ...zt+k , s exited from sx at t + k |
at−1, at...at+k, p(s) started at t from entry state p(s)n, λ),

which is graphically described in Figure 10.
We say that a production state finishes at time t after the production of observation zt

and an abstract state finishes when its exit state sx is entered after observation zt has been
produced and action at initiated. We also say that a production state s started at time t,
if at time t it produced observation zt. An abstract state s starts at time t, if at time t
one of its children produced observation zt but observation zt−1 was generated before s was
activated by its parent or any other horizontal transition.

Once the α variable is calculated it can also be used to estimate the probability of an
observation sequence Z = z1, ...zT given an action sequence A = a0...aT and the model
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Procedure H-POMDP-Baum-Welch

• Input

– Sequences of observations Z1, ..., Zk and actions A1, ..., Ak .

∗ Zi: a sequence of observations z1, ...zT .
∗ Ai: a sequence of actions a0, ..., aT .

– Model parameters λ = T,O, V .

∗ T : horizontal transition matrices.
∗ O: observation models of production states.
∗ V : vertical transition vectors from entry states to children.

• Output

– A new set of λ′ parameters that locally maximizes the likelihood of the ob-
served data

P (Z1, ..., Zk|A1, ..., Ak , λ′)

• Procedure

– The algorithm works in an iterative fashion where at each iteration it chooses
new parameters λt that maximize the expectation of the likelihood of the
observation sequences with respect to the hidden states

λt = argmaxλ

∑
S1,...,Sk

P (S1, ...Sk|Z1, ..., Zk, A1, ..., Ak , λt−1)P (Z|A,S1, ..., Skλ),

where Si is a hidden state path for observation sequence Zi. This guarantees
that P (Z1, ..., Zk |A1, ...Ak, λt) ≥ P (Z1, ..., Zk|A1, ..., Ak , λt−1).

Figure 9: The figure describes the inputs, outputs and procedure of the Baum-Welch algo-
rithm for H-POMDPs. The algorithm learns the model parameters, that maxi-
mize the likelihood of the observation sequences given the actions sequences. The
algorithm works in an iterative hill-climbing fashion where on each iteration the
likelihood is better than on the previous one. The algorithm is sensitive to the
initial model parameters and is not guaranteed to reach a globally optimal so-
lution. The implementation details are described in Section 4.1 and Appendix
B.

parameters λ:

P (Z|A,λ) =
∑

i∈Cs
p∪Cs

x

α(s, i, 1, T ), where s = root entry.

18



n x n x

n xp(s)

s

Figure 10: The α variables represents the probability of the observation sequence zt...zt+k

ending in state sx at time t + k (denoted as a bold circle), given that actions
at, ...at+k were taken and the parent of s, p(s) was started at time t from entry
state p(s)n (also denoted as bold circle).

The next important variable for the expectation step is the backward variable β (similar
to HMMs):

β(p(s)x, sn, t, t + k) =
P (zt, ...zt+k|at, ...at+k, sn started at t, p(s) generated
zt...zt+k and exited from p(s)x at t + k, λ),

which is graphically described in Figure 11.

n x

n x

p(s)

sn x

Figure 11: The β variable denotes the probability that a state s was entered at time t from
entry state sn and that the observations zt...zt+k were produced by the parent
of s, which is p(s), and actions at, ...at+k were taken, and p(s) terminated at
time t + k from exit state p(s)x.

The next variable is ξ, which is one of the results of the expectation step:

ξ(t, sx, s′n) = P (s finished at time t from sx

s′ started at time t + 1 from s′n | a0, ...aT , z1, ...zT , λ)

and is graphically described in Figure 12.
The second result of the expectation step is the χ(t, p(s)n, sn) variable:

χ(t, p(s)n, sn) = P (p(s)n started at time t, sn started at time t |
a0, ...aT , z1, ...zT , λ),
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Figure 12: The ξ variable denotes the probability of making a horizontal transition from
exit state sx to entry state s′n at time t, given a sequence of observations and
actions and the model parameters.
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Figure 13: The χ defines the probability that entry state sn of child s was activated by the
entry state p(s)n of its parent p(s) at time t given the action and observation
sequence.

which is graphically described in Figure 13.
The exact computation of all the above variables, α, β, ξ, and χ is described in detail in

Appendix B. Based on these variables we can estimate the model parameters. The vertical
transition probability from the root is estimated by

V (sn|p(s)n) = χ(1, p(s)n, sn), if p(s) = root, sn ∈ Cp(s)
n ∪ Cp(s)

p .

The vertical transition probability to any non-root child is estimated by deriving the number
of times the child was vertically entered over the total number of times the child and its
siblings were entered:

V (sn|p(s)n) =
∑T

t=1 χ(t, p(s)n, sn)∑
s′n∈C

p(s)
n ∪C

p(s)
p

∑T
t=1 χ(t, p(s)n, s′n)

if s �= root.

The horizontal transition matrices are estimated by

T (s′n|sx, a) =

∑T
t=1|at=a ξ(t, sx, s′n)∑T

t=1|at=a

∑
s′′n∈C

p(s)
p ∪C

p(s)
n

ξ(t, sx, s′′n)
,

which calculates the average number of times the process went from state s to state s′ over
the number of times the process exited state s under action a. The observation vectors are
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estimated by:

O(z|s, a) =

∑T
t=1,zt=z,at−1=a χ(t, p(s)n, s) +

∑T
t=2,zt=z,at−1=a γin(t, s)∑T

t=1 χ(t, p(s)n, s) +
∑T

t=2 γin(t, s)

where

γin(t, s) =
∑

s′x∈C
p(s)
x ∪C

p(s)
p

ξ(t − 1, s′x, s),

which calculates the average number of times the process was in state s and perceived
observation z over the number of times the process was in state s.

All of the above formulas for the hierarchical Baum-Welch algorithm are used to estimate
the model parameters, given a single observation and action sequence. However, in order
to have sufficient data to make reliable estimates of all model parameters, one has to use
multiple observation and action sequences. If we had K sequences of data, then for each
iteration the algorithm needs to adjust the model parameters such that the probability of all
sequences is maximized. Assuming the data sequences are drawn from identical distributions
and independent of each other (iid), then the probability of all sequences can be calculated
as the production of the individual sequences:

P (Z1, ..., ZK |A1, ...AK , λ) =
K∏

k=1

P (Zk|Ak, λ). (1)

Since estimation is based on frequencies of occurrence of various events, the new estima-
tion formulas can be constructed by adding together the individual frequencies of occurrence
for each data sequence. The vertical transitions are estimated by

V (sn|p(s)n) =
K∑

k=1

χk(1, p(s)n, sn), if p(s) = root, sn ∈ Cp(s)
n ∪ Cp(s)

p (2)

and

V (sn|p(s)n) =
∑K

k=1

∑Tk
t=1 χk(t, p(s)n, sn)∑K

k=1

∑
s′n∈C

p(s)
n ∪C

p(s)
p

∑Tk
t=1 χk(t, p(s)n, s′n)

,

if s �= root,

(3)

the horizontal transitions by

T (s′n|sx, a) =

∑K
k=1

∑Tk

t=1|at=a ξk(t, sx, s′n)∑K
k=1

∑Tk

t=1|at=a

∑
s′′n∈C

p(s)
p ∪C

p(s)
n

ξk(t, sx, s′′n)
(4)

and the observation models by

O(z|s, a) =∑K
k=1

∑Tk
t=1,zt=z,at−1=a χk(t, p(s)n, s) +

∑Tk
t=2,zt=z,at−1=a γink

(t, s)∑K
k=1

∑Tk
t=1 χk(t, p(s)n, s) +

∑Tk
t=2 γink

(t, s)
. (5)
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A drawback of the above algorithm is that the time complexity of the forward and
backward pass is O(NT 3), where N is the number of states, which may be unacceptable for
long training sequences. The reason for the cubic time complexity is that for each abstract
state and observation sequence of length T we need to compute T 2 α terms for all the
possible subsequences of observations under the abstract state. Computation of the α term
for each subsequence may depend at the most on T previous α term computations, which
gives rise to cubic time complexity.

An alternative approach over the cubic time-complexity is to represent H-POMDPs
as Dynamic Bayesian networks (DBN) and then use standard Bayesian network inference
algorithms (Theocharous, Murphy, & Kaelbling, 2004) which take in the worst case O(N2T )
time. Representing H-POMDPS as DBNS then has the advantage that we can train for
long observation sequences. Nonetheless, for short observation sequences and large models
the original algorithm may be faster, since it is linear in the number of states.

4.2 Approximate learning methods

To get the advantage of linear time complexity with respect to the size of the model we have
explored various approximate training schemes that use training data with short observation
sequences. In the H-POMDP model in order to learn relationships between states which
are children of the root (and the sub model below them), training data should at least go
through both of those states. This intuition can be better understood by close examination
of the calculation of the probability of going from one state sx at the abstract level to
another state s′n at time t (or ξ(t, sx, s′n)) in Appendix B.

The above realization leads to two approximate learning methods. In the first method,
which we call reuse-training, we collect data for each abstract state separately and train
submodels under each abstract state separately. If the horizontal transition model at the
abstract level is deterministic, then we are done. If the horizontal transition model at the
abstract level is not deterministic, then we can collect data for the entire model and use
the submodels learned with the reuse-training method as initial submodels. In general, this
method allows us to come up with better initial models. Since the hierarchical Baum-Welch
algorithm is an expectation maximization algorithm, it is highly sensitive to the initial
model. In addition, if we have some large environment, with similar corridors (abstract
states) we can just train the model in one corridor and use the learned model parameters for
all other similar corridors. Moreover, once we have trained local abstract states separately,
we can use them as part of any arbitrary global model. Figure 14(a) shows an example
H-POMDP model and Figure 14(b) shows how we created the different submodels to be
trained.

For the second method, which we call selective-training, we only carry out the estimation
step of the EM algorithm for selected parts of the model. More precisely, we only compute
the α and β variables for the abstract states and their children which are valid. The
validity of a state depends on the current training sequence. For each training sequence
the valid states are the abstract states (and the states in their sub model) from which the
data sequence was initiated and its adjacent states to which there is a non-zero transition
probability. In addition to computing the α and β variables of valid states we zero all vertical
transitions from the root except the vertical transition to the valid state from which the
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Figure 14: Figure (a) shows an example H-POMDP model for which we illustrate our
approximate training methods. Figure (b) demonstrates the reuse-training
method, where we train separately submodels under each abstract state child of
the root (S1, S2, S3)

training sequence was initiated. For each valid abstract state and its submodels we estimate
the new updates of the parameters. A combined update for all model parameters from all
training sequences is done at the end of every epoch (after all training sequences) according
to Equations 2, 3, 4, and 5. Figure 15 shows a graphical description of the selective-training
approach.

1S S S
2 3 S S S

1 2 3

Figure 15: In the selective-training method only selected parts of the model are trained for
each training sequence. Here two data sequences define two valid selections of
the whole model which are shown in bold lines.

4.3 Structure learning

We also investigated the use of the H-POMDP model to infer the spatial structure of
corridor environments from weak prior knowledge. To accomplish structure learning, we
train models from different initial priors on the environment topology. The difference among
the initial models is how ergodic they are (that is, how many connections exist between
states). For example, in some initial models, every corridor is connected to all junctions and
every junction is connected to multiple corridors. Our results show that for the Hierarchical
POMDP model, the trained models are much closer to the true structure of the environment
than equivalent uniform resolution flat POMDPs, trained using the same data. The reason
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is that the Hierarchical Baum-Welch algorithm does not learn the relationship between
two abstract states (which are children of the root) unless the training data has a non-
zero probability of exiting the second abstract state. Again, this observation can be better
understood by close examination of the calculation of the probability of going from one
state s′x at the abstract level to another state s′n at time t. This probability will be zero
unless state s′n exits. In the flat case the algorithm will still learn relationships between the
children of the abstract states even if the training data does not go all the way through the
second abstract state. This idea is illustrated in Figure 16.

N1 N2 X2
X1 N3 X3

s1 s2 s3

s1 s2 s3

HIERARCHICAL

FLAT

Figure 16: Assume that an observation sequence of length 5 is started from entry state N1

and that, in the correct topology of the environment the transition probabil-
ity X1 → N3 is zero. In the hierarchical model the topology will be learned
correctly since in order for the transition X1 → N3 to be non-zero we need an
observation sequence of at least length 6. In the flat model the topology will not
be learned correctly since the transition probability S1 → S3 will not be zero.
The hierarchical algorithm is able to better discover the relationships between
groups of states and has the potential for inferring the structure at the abstract
level.

5. Planning

In this section we present two approximate planning algorithms for POMDPs that take
advantage of spatial and temporal abstractions. The unifying theme of both algorithms is
their usage of the semi-Markov decision process framework for partially observable domains.
In the first approach (Section 5.1), the spatial and temporal abstraction is derived from the
hidden state abstraction of the H-POMDP model. The planning part uses a special case of
the options framework where initiation and termination of long-term actions is defined based
on the hierarchical state abstraction. These hierarchical plans are heuristically mapped to
belief states during execution. In the second approach (Section 5.2) the spatial and temporal
abstraction is explicitly derived from agent trajectories over the belief space. The agent uses
model-based reinforcement learning for computing a value function at these points. The
reinforcement learning backups use the Q-learning rule for SMDPs.
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5.1 Hierarchical planning in POMDPs using the H-POMDP structure

The first approach combines ideas from SMDP planning in completely observable domains
(Sutton et al., 1999) with approximate POMDP planning algorithms (Koenig & Simmons,
1998). First, we design a set of macro-actions that operate within the abstract states. For
example, for each abstract state we design or learn a policy (or macro-action) for exiting
each one of the exit-states of the abstract state. We then compute reward and transition
models for executing those macro-actions under every abstract state. Using the reward
and transition models of the macro-action we can compute a plan, a mapping from entry
points of the abstract states to macro-actions. During execution of the plan we map every
probability distribution over the hidden production states of the model to the best macro-
action.

To compute the plan we treat the production states and the entry states (of the abstract
states) as the states of an SMDP. The set of actions is the set of primitive actions applicable
in production states, and the set of macro-actions for each abstract state s, which transition
the agent out of the abstract state s, or to some child state of the abstract state. For our
corridor environment the number of macro-actions available for each abstract state is equal
to the number of exit states that belong to the abstract state. The goal abstract state has
an additional macro-action that can take the robot to a goal production state within the
abstract state. We can design macro-actions for each corridor by either hard-coding them
or by computing them using the MDP framework where we only give a goal reward. Figure
17 shows different macro-actions for corridors.

During execution we can use a hierarchical most likely state (H-MLS) strategy, where
we hierarchically compute the most likely state and then execute the best macro-action
assuming the world is completely observable. A macro-action terminates when the parent
abstract state which initiated the macro-action is no longer the most likely abstract state.
Another approach is to use a hierarchical QMDP (H-QMDP) heuristic where we hierar-
chically choose the best action for current belief state at the current level. This heuristic
assumes that the world will become completely observable at the next time step.

But first, we need to compute an SMDP plan over the entry states of the abstract states.
The first step is to evaluate the given set of macro-actions available for each abstract state
s (which we define to be M s). We need to evaluate their transition and reward model for
each entry state sn. The transition probability from entry-state sn ∈ N s to an adjacent
state s′ of the abstract state s under some macro-action µ (s′ could be a production or
entry state) is computed by

T (s′|sn, µ) =
∑

∀sx∈Xs


 ∑
∀i∈Cs

p∪Cs
n

V (i|sn)TD(sx|i, µ)


 T (s′|sx, πs

µ(sx))

and is graphically explained in Figure 18. An exit from state s can occur from any exit state
sx ∈ Xs under the primitive action πs

µ(sx), where πs
µ defines the policy of macro action µ

on all states i that are either in the Cs
p, Cs

n, or Xs sets. If i is a production or exit state,
then πs

µ(i) is a primitive action. If i is an entry state, then πs
µ(i) is a macro action that

belongs to M j (where i ∈ N j). The term TD(sx|i, µ) is the expected discounted transition
probability for exiting the parent of state i starting from i and can be calculated by solving
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Figure 17: H-POMDP macro-actions for driving down the corridor. The circles and arrows
within the circles define state and orientation. The arrows from one circle to
the next define non-zero transition probabilities. The different dotting schemes
indicate transition dynamics for the three actions, f which means go forward, r
which means turn right and l which means turn left. The top figure is a macro-
action for exiting the east side of the corridor under the “go-forward” action,
the middle figure is a macro-action for exiting the west side of the corridor with
the go-forward action, and the bottom figure is a macro-action for reaching a
particular location within the corridor.

the following set of linear equations:

TD(sx|i, µ) = T (sx|i, πs
µ(i)) + γ

∑
j∈Cs

p∪Cs
n

T (j|i, πs
µ(i))TD(sx|j, µ).
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Figure 18: The dashed arrow is the discounted transition probability for reaching state Sx

form state i. The solid arrows are simply the transition probabilities for the
forward action.

In a similar manner we can calculate the reward R that will be gained when an abstract
action µ is executed at an entry state sn as shown below:

R(sn, µ) =
∑

i∈Cs
p∪Cs

n

V (i|sn)RD(i, µ),

where the term RD(i, µ) can be calculated by solving a set of linear equations:

RD(i, µ) = R(i, πs
µ(i)) + γ

∑
j∈Cs

p∪Cs
n

T (j|i, πs
µ(i))RD(j, µ).

Given any arbitrary H-POMDP and all the macro-actions Ms of every abstract state
we can calculate all the reward and transition models at the highest level by starting from
the lowest levels and moving toward the top. Once the transition and reward models are
calculated we can construct an abstract plan among production and entry-states at the
abstract level. To find a plan, we first compute the optimal values of states by solving the
Bellman equations:

V ∗(s1) = max
a∈A∪Ms1

(R(s1, a) + γ
∑

s2∈Croot

T (s2|s1, a)V ∗(s2)),

where a is either a primitive action or a macro action. We can then associate the best action
for each state (or optimal policy π∗) greedily:

π∗(s1) = argmaxa∈A∪Ms1 (R(s1, a) + γ
∑

s2∈Croot

T (s2|s1, a)V ∗(s2)).

Executing an abstract plan means that the robot can decide the next macro-action only
when it enters an entry-state at the abstract level. In reality, we never know exactly when
the robot is at an entry-state at the abstract level. Therefore, we compute the values of
all states which are not at the abstract level in an iterative fashion from top to bottom as
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shown in the next equation:

V (s) = max
µ∈Mp(s)

[RD(s, µ)+

γ
∑

s′∈C
p(p(s))
p ∪C

p(p(s))
n


 ∑

∀sx∈Xp(s)

TD(sx|s, µ)T (s′|sx, π
p(s)
µ (sx)


 V (s′)]

(6)

and explained in Figure 19. The best macro-action is then computed greedily by:

π(s) = argmaxµ∈Mp(s) [RD(s, µ)+

γ
∑

s′∈C
p(p(s))
p ∪C

p(p(s))
n


 ∑

∀sx∈Xp(s)

TD(sx|s, µ)T (s′|sx, πp(s)
µ (sx)


 V (s′)].

(7)

x

µ)RD(s,

p(p(s))

TD(p(s) x |s, µ)

f

s’

s
µ

T(s’|s x , f)

ff

fn
µ

p(s)

Figure 19: The value of a state s under a macro-action µ is computed by taking into con-
sideration the total reward and discounted transition probability for exiting the
parent of s, p(s), from all exit states sx, and the values of the resulting adjacent
states to p(s), such as s′. Equation 6 defines the value of a state as the maximum
value among all macro-actions µ that belong to the set of macro-actions Mp(s)

available for the parent of s, p(s).

To execute the abstract plan we keep track of a probability distribution (or belief state)
at each level of abstraction. An efficient way to calculate a probability distribution at each
level of abstraction is to first calculate a global transition matrix among all production
states under the primitive actions, and use that transition matrix to update a global belief
state among production states after every action a and observation z as shown in the next
equation:

b′(s) =
1

P (z|a, b)
P (z|s, a)

|S|∑
s′=1

P (s|a, s′)b(s′),

where b′ is the next belief state, P (z|s, a) is the probability of perceiving observation z when
action a was taken in state s. P (s|a, s′) is the probability of going from state s′ to state
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s under action a and b is the previous belief state. Using the belief of production states
we can calculate the belief of abstract states in an iterative fashion from leaves to root as
shown below:

b(s) =
∑

c(s,i)∈Cs
p∪Cs

a

b(c(s, i)) if s is an abstract state.

After every action and observation we update the belief state b, and then choose actions
according to any of the below strategies:

• The first is a hierarchical most likely state strategy (H-MLS). Here, we start from the
root and iteratively find the most likely child state at each sublevel until a production
state s is reached. To avoid situations where the robot gets stuck into a loop behavior,
we don’t always choose the state at the peak of the belief, but rather choose randomly
one of the states whose belief is closer than 1/|S| to the maximum belief in the current
sublevel (where |S| is the number of states at the same depth as the sublevel). We
then choose the best macro-action to execute according to Equation 7. The macro-
action terminates when one of the ancestors is no longer among the most likely state
peaks. We then jump to the level where the change occurred and restart the process.

• The second method is a hierarchical QMDP strategy (H-QMDP). Here, we find the best
macro-action µ to execute under every abstract state S by

µ = argmaxµ∈MS

∑
s∈CS

p

b(s)[RD(s, µ)+

γ
∑

s′∈C
p(S)
p ∪C

p(S)
n


 ∑

∀sx∈XS

TD(sx|s, µ)T (s′|sx, πS
µ (sx)


 V (s′)]

The overall best macro-action µ and abstract state S is the one which is best over
all abstract state and macro-action pairs. The macro-action action is executed under
the abstract state S until another < µ,S > pair is maximized (according to the above
equation).

To execute a macro-action under some abstract state S, we create a new separate local
belief state which we initialize according to the most likely child production state of S. The
macro-action is then executed using the flat MLS strategy (Koenig & Simmons, 1998).

5.2 Hierarchical planning in POMDPs using generic macro-actions

The second approach explicitly takes into consideration the outcomes of macro-actions in
belief-space (Theocharous & Kaelbling, 2004). It works by using a dynamically-created
finite-grid approximation to the belief space, and then using model-based reinforcement
learning to compute a value function at the grid points. Our algorithm takes as input a
POMDP model, a resolution r, and a set of macro-actions (described as policies or finite
state automata). The output is a set of grid-points (in belief space) and their associated
action-values, which via interpolation specify an action-value function over the entire belief
space, and therefore a complete policy for the POMDP.
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Dynamic grid approximation A standard method of finding approximate solutions
to POMDPs is to discretize the belief space by covering it with a uniformly-spaced grid
(otherwise called a regular grid) as shown in Figure 20, then solve an MDP that takes those
grid points as states (Hauskrecht, 2000). Unfortunately, the number of grid points required
rises exponentially in the number of dimensions in the belief space, which corresponds to
the number of states in the original space.

Recent studies have shown that in many cases, an agent actually travels through a very
small subpart of its entire belief space. Roy and Gordon find a low-dimensional subspace
of the original belief space, then discretize that uniformly to get an MDP approximation to
the original POMDP (Roy & Gordon, 2003). This is an effective strategy, but it might be
that the final uniform discretization is unnecessarily fine.

S1

S2

S3(1,0,0)

(0,1,0)

(0,0,1)
S1 S3

S2

RESOLUTION 1 RESOLUTION 2 RESOLUTION 4

(0.5,0.5,0)

S1

S2

S3

(0.25,0.75,0)

Figure 20: The figure depicts various regular discretizations of a 3 dimensional belief sim-
plex. The belief-space is the surface of the triangle, while grid points are the
intersection of the lines drawn within the triangles. Using resolution of powers
of 2 allows finer discretizations to include the points of coarser discretizations.

In our work, we allocate grid points from a uniformly-spaced grid dynamically by sim-
ulating trajectories of the agent through the belief space. At each belief state experienced,
we find the grid point that is closest to that belief state and add it to the set of grid points
that we explicitly consider. In this way, we develop a set of grid points that is typically
a very small subset of the entire possible grid, which is adapted to the parts of the belief
space typically inhabited by the agent.

In particular, given a grid resolution r and a belief state b we can compute the coordi-
nates (grid points gi) of the belief simplex that contains b using an efficient method called
Freudenthal triangulation (Lovejoy, 1991). In addition to the vertices of a sub-simplex, Fre-
undenthal triangulation also produces barycentric coordinates λi, with respect to gi, which
enable effective interpolation for the value of the belief state b from the values of the grid
points gi (Hauskrecht, 2000). Using the barycentric coordinates we can also decide which
is the closest grid-point to be added in the state space.

Algorithm Our algorithm works by building a grid-based approximation of the belief
space while executing a policy made up of macro actions. The policy is determined by
“solving” the finite MDP over the grid points. Computing a policy over grid points equally
spaced in the belief simplex, otherwise called regular discretization, is computationally in-

30



tractable since the number of grid-points grows exponentially with the resolution (Lovejoy,
1991). Nonetheless, the value of a belief point in a regular discretization can be interpo-
lated efficiently from the values of the neighboring grid-points (Lovejoy, 1991). On the
other hand, in variable resolution non-regular grids, interpolation can be computationally
expensive (Hauskrecht, 2000). A better approach is variable resolution with regular dis-
cretization which takes advantage of fast interpolation and increases resolution only in the
necessary areas (Zhou & Hansen, 2001). Our approach falls in this last category with the
addition of macro-actions, which exhibit various advantages over approaches using primitive
actions only. Specifically, we use a reinforcement-learning algorithm (rather than dynamic
programming) to compute a value function over the MDP states. It works by generat-
ing trajectories through the belief space according to the current policy, with some added
exploration. Reinforcement learning using a model, otherwise called real time dynamic
programming (RTDP), is not only better suited for huge spaces but in our case is also
convenient in estimating the necessary models of our macro-actions over the experienced
grid points.

g2

b

g
g3

g1
b’

b’’

Figure 21: The agent finds itself at a belief state b. It maps b to the grid point g, which
has the largest barycentric coordinate among the sub-simplex coordinates that
contain b. In case the nearest grid-point g is missing, it is interpolated from
coarser resolutions and added to the representation. If the resolution is 1, the
value of g is initialized to zero. Now, it needs to do a value backup for that grid
point. It chooses a macro action and executes it starting from the chosen grid-
point, using the primitive actions and observations that it executes along the
way to update its belief state. It needs to get a value estimate for the resulting
belief state b′′. It does so by using the barycentric coordinates from the grid to
interpolate a value from nearby grid points g1, g2, and g3. In case the nearest
grid-point gi is missing, it is interpolated from coarser resolutions. The agent
executes the macro-action from the same grid point g multiple times so that it
can approximate the probability distribution over the resulting belief-states b′′.
Finally, it can update the estimated value of the grid point g and execute the
macro-action chosen from the true belief state b. The process repeats from the
next true belief state b′.

Figure 21 gives a graphical explanation of the algorithm. Below, we sketch the entire
algorithm in detail:
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1. Assume a current true state s. This is the physical true location of the agent, and
it should have support in the current belief state b (that is b(s) �= 0). It is chosen
randomely from the starting belief state.

2. Discretize the current belief state b → gi, where gi is the closest grid-point (with the
maximum barycentric coordinate) in a regular discretization of the belief space. If gi

is missing add it to the table. If the resolution is 1 initialize its value to zero otherwise
interpolate its initial value from coarser resolutions.

3. Choose a random action ε% of the time. The rest of the time choose the best macro-
action µ by interpolating over the Q values of the vertices of the sub-simplex that
contains b: µ = argmaxµ∈M

∑|S|+1
i=1 λiQ(gi, µ).

4. Estimate E
[
R(gi, µ) + γtV (b′)

]
by sampling:

(a) Sample a state s from the current grid-belief state gi (which like all belief states
represents a probability distribution over world states).

i. Set t = 0
ii. Choose the appropriate primitive action a according to macro-action µ.
iii. Sample the next state s′ from the transition model T (s, a, ·).
iv. Sample an observation z from observation model O(a, s′, ·).
v. Store the reward R(gi, µ) := R(gi, µ)2 + γtR(s, a).
vi. Update the belief state: b′(j) := 1

αO(a, j, z)
∑

i∈S T (i, a, j), for all states j,
where α is a normalizing factor.

vii. Set t = t + 1, b = b′, s = s′ and repeat from step 4(a)ii until µ terminates.

(b) Compute the value of the resulting belief state b′ by interpolating over the vertices
in the resulting belief sub-simplex: V (b′) =

∑|S|+1
i λiV (gi). If the closest grid-

point (with the maximum barycentric coordinate) is missing, interpolate it from
coarser resolutions.

(c) Repeat steps 4a and 4b multiple times, and average the estimate
[
R(gi, µ) + γtV (b′)

]
.

5. Update the state action value: Q(gi, µ) = (1 − β)Q(gi, µ) + βE
[
R(gi, µ) + γtV (b′)

]
.

6. Update the state value: V (gi) = argmaxµ∈MQ(gi, µ).

7. Execute the macro-action µ starting from belief state b until termination. During
execution, generate observations by sampling the POMDP model, starting from the
true state s. Set b = b′ and s = s′ and go to step 2.

8. Repeat this learning epoch multiple times starting from the same b.

2. For faster learning we use reward-shaping: R(gi, µ) := R(gi, µ) + γt+1V (s′) − γtV (s), where V (s) are
the values of the underlying MDP (Ng, Harada, & Russell, 1999)
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6. The robot navigation domain

We tested our learning and planning algorithms in the domain of robot navigation. In this
section we describe the task, the robot platforms, and how we represent spatial environments
as POMDPs/H-POMDPs (Figure 22).

sensors
Sonar

Infra−red
sensors

Bumper

Command:
Go get coffee

Odometric 
sensors

Arm

Wheels

ACTIONS (go_forward, turn_left, turn_right)

PERCEPTIONS (Walls, Openings)

(a) (b)

Figure 22: Figure (a) shows a section from a corridor on the 3rd floor of the Engineering
Building at Michigan State University (MSU) and a real robot named Pavlov
(a Nomad 200). Pavlov uses its sonar sensors to perceive walls and openings
on the North, West, South, and East direction. After every perception, Pavlov
takes actions such as go-forward, turn-left, and turn-right to veer toward a goal
location. Navigation in such environments is challenging due to noisy sensors
and actuators, long corridors, and the fact that many locations in the environ-
ment generate similar sensor values. Figure (b) shows a hierarchical POMDP
representation of spatial indoor environments. Abstract states (shaded ovals)
represent corridors, junctions and buildings. Production states (leafs) represent
robot location and orientation.

We have conducted experiments using three robot platforms. The first two are real
robot platforms and the third a simulated robot (Figure 23). The simulated robot platform
simulates a Nomad 200 robot. In the simulation environment the robot can move in a
two dimensional world populated with convex polygonal structures (see Figure 23). Sensor
modules simulate each of the sensors of the real robot platform and report sensor values
according to the current simulation world.

The robotic platforms operated in two navigation environments (see Figure 24). The
first is an approximate model of the 3rd floor of the Michigan State University engineering
building. The second environment has the same dimensions as the 3rd floor of the MSU
engineering building. The size difference between the two algorithms was used for demon-
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Figure 23: On the left are two pictures of real robots Pavlov, a Nomad 200 and Erik the
Red, a B21r. On the right is a snapshot of the Nomad 200 simulator. The
main window shows a section of the environment and the simulated robot. The
two windows on the right show infrared and sonar sensor values at the current
location

strating how our hierarchical learning and planning algorithms scale much better to larger
environments than flat approaches.
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Figure 24: The figure on the left shows an approximate model of the 3rd floor of the engi-
neering building that is used with the Nomad 200 simulator. The figure on the
right shows the real 3rd floor of the engineering building. This environment is
used for experiments both, in the Nomad 200 simulator, and with the real robot
Pavlov in the actual physical environment. The number next to the edges is the
distance between the nodes in meters.

Topological maps of the environment can either be learned or provided. The topology of
the environment can be learned either by identifying landmark locations and their relation-
ships (Mataric, 1990), or by learning a metric representation of the environment and then
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extracting the topology (Thrun, 99). In our experiments we assume that we start with a
topological map which we compile into an H-POMDP representation (see Figure 25). When
we compile the small topological map in Figure 24, the result is an initial H-POMDP model
with 575 states. When this initial H-POMDP model is converted to a flat POMDP the
number of states is 465. Compilation of the large topological map in Figure 24 results in
an H-POMDP model with 1385 states. When this H-POMDP model is converted to a flat
POMDP the number of states is 1285, with a much denser transition matrix.

Figure 25: The figure on the left is a sample three-dimensional view of the H-POMDP model
for the forward action. The solid bold arrows represent the vertical transition
matrices. The dashed arrows represent the horizontal transitions. The bold
circles inside the abstract states represent entry-states and the empty circles
represent exit-states. In this representation all the children of the root are
abstract states. Production states are the leaves of the model and represent
two-meter locations in the environment. The arrows inside a production state
represent the orientation of the production state. The figure on the right is the
equivalent flat model of the H-POMDP.

To learn the parameters of the H-POMDP models, first we need to collect sequences of
observations and actions. To collect data we run the robot in the environment and record
every action taken and every observation perceived. There are three actions available, “go-
forward” which takes the robot forward approximately two meters, “turn-left,” which makes
the robot turn left 90 degrees, and “turn-right” which makes the robot turn right 90 degrees.
These actions are implemented in a behavior-based manner, where during execution of the
action, the robot is also avoiding obstacles and keeps aligned with the walls. The observation
consists of 4 components, the observation of a wall or opening, on the front left, back, and
right side of the robot. The observations are produced by a neural-net trained with hand-
labeled examples (Mahadevan, Theocharous, & Khaleeli, 1998).
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7. Experimental results

Next we present experimental results in the navigation domain of all of our learning and
planning algorithms and demonstrate their advantages over flat approaches.

7.1 Learning experiments in the state representation

To investigate the feasibility of the hierarchical Baum-Welch algorithm and the approximate
training methods in learning large scale corridor environments, we performed experiments
using the small simulation environment in Figure 24. First we created artificial data using
a good hand-coded model (which we refer to as the original model), and for which all
transitions to the next state were set to 0.9 and all self transitions set to 0.1. For the
sensor models we initialized the probabilities of perceiving the correct observation to be 0.9
and all probabilities of perceiving an incorrect observation to be 0.1. Transitions at the
abstract level were set deterministically to represent the correct topology of junction and
corridors. For example, a forward exit from a corridor transitions to the correct entry state
of a junction abstract state.

Using different sets of initial models, different lengths of data sequences, some of which
were labeled with the starting state, and some of which were not labeled with the starting
state, we trained both POMDP and H-POMDP models for the simulated environment. We
used “short” data sequences where data was collected across two abstract states and “long”
data sequences where data was collected across three abstract states. We used “uniform”
initial models where all matrices in the “original” model were changed to uniform (e.g.
0.1, 0.9 was changed to 0.5, 0.5), and “good” initial models where all values of “0.9” in
the original model were changed to 0.6 and all values of 0.1 were changed to 0.4. We
collected 738 short training sequences, 246 long sequences, and 500 test sequences of length
40. We also collected 232 train sequences for training the submodels of the abstract states
separately with the “reuse-training” method. All testing and training data was collected
by sampling the good original model.

We trained uniform and good initial model using five training methods. In the first
method, which we name “submodels-only” we trained the submodels of each abstract state
and did not train the model at the abstract level. The second method is the “reuse-training”
method where we trained the submodels separately and then retrained the whole model
again. The third method is the “selective-training”, the fourth is the standard EM learning
algorithm for H-POMDPs, and the fifth method is the standard EM algorithm for learning
POMDPs. We evaluated and compared the learned models based on robot localization, log
likelihood of the training data, distance of the learned model from the original model, and
computation time.

Log likelihood of the training data was measured using the log likelihood (
∑K

k log-
P (Zk|Ak, λf )) function defined in Equation 1, where Zk is the observation sequence for
training data set k, and Ak is action sequence k. The term λf refers to the parameters of
a flat POMDP (T,O, and initial probability distribution π). The reason λf refers to the
parameters of a flat POMDP is because we need to be able to compare hierarchical and flat
POMDPs. Therefore, before any comparisons are made we convert the learned H-POMDPs
to flat POMDPs. Since a flat POMDP can also be viewed as a Hierarchical POMDP with
a single abstract state, the root, we can compute the log likelihood using Equation 1. We
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used this measure to show both convergence of the training algorithms, and how the learned
H-POMDPs compare in terms of fit to the training data. Plots of the log likelihood for
different experiments are shown in Figure 26.

Distance (or relative log-likelihood) was measured according to Equation 8 (Rabiner,
1989), which defines a method for measuring the similarity between two POMDP models
λ1, and λ2. It is a measure of how well model λ1 matches observations generated by model
λ2. The sign of the distance indicates which model fits the data better. A negative sign
means λ2 is better, while a positive sign means that λ1 is better. The equation can be
derived from the general definition of KL divergence (Juang & Rabiner, 1985):

D(λ1, λ2) =
log P (Z2|A2, λ1) − log P (Z2|A2, λ2)

T
, (8)

where Z2 and A2 refer to a sequence of observations and actions that were produced by
model λ2, and T refers to the length of the sequence. In our experiments λ2 refers to the
good “original” model which we used to create 500 test sequences. Before any distance
measurement was made, all the hierarchical models were converted to flat models. In Table
1 we report the means and standard deviations of the distances of the learned models from
the original model.

Robot localization was done using the most likely state heuristic (Koenig & Simmons,
1998). To compute the most likely state we first convert the H-POMDP learned to a
flat POMDP as was shown in Section 3. Then, for a test data sequence (of actions and
observations), we compute the probability distribution over the states of the model after
every action and observation as summarized below:

b′(s′) =
O(s′, a, z)

∑
s∈S T (s, a, s′)b(s)

P (z|a, b)
.

The most likely state for each belief state b then is MLS = argmaxsb(s). Since our test
data is created by sampling some good H-POMDP model we know the true state sequence.
Thus, we estimate the error on robot localization for a particular test sequence by counting
the number of times the true state was different from the most likely state. For multiple
test sequences we average over all the errors. Table 2 shows robot localization results for
the different models trained.

In passing, we should note the most likely state heuristic is a naive way of decoding the
underlying state sequence in an HMM. A better approach is the Viterbi algorithm which
computes the most likely state sequence rather than the most likely state at every time
index (Viterbi, 1967), (Rabiner, 1989). However, the Viterbi algorithm requires the whole
observation sequence before-hand which is not possible in the navigation domain.

Computation time was done by simply measuring computer time. Computation times
are used to compare training times for the approximate learning algorithms with the exact
learning algorithm for H-POMDPs and the flat learning algorithm for POMDPs. These
results are shown in Table 3

From Tables 1 and 2, and from the graphs in Figure 26, we can draw the following
conclusions:

• In almost all of the experiments described the “reuse-training” method performs the
best. Even when we start with uniform initial models and do not provide the starting
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Initial Distance Training log Training Distance
model D(initial, data likelihood method D(learned,

original) # of seq., during original)
before # of abs. training after

training states training
traversed,

µ, (σ) label µ, (σ)
original 0.0, (0.0)

Experiment 1
232, 1,yes submodels-only -0.40, (0.21)

Figure reuse-training -0.29, (0.18)
uniform -1.3, (0.2) 738,2,yes (26.1) selective-training -0.34, (0.20)

hierarchical -0.35, (0.21)
flat -0.80, (0.35)

Experiment 2
232,1,yes submodels-only -0.38, 0.20

Figure reuse-training -0.30, (0.19)
good -0.95, (0.18) 738,2,yes (26.2) selective-training -0.30, (0.19)

hierarchical -0.30, (0.19)
flat -0.49, (0.25)

Experiment 3
Figure reuse-training -0.72, (0.31)

uniform -1.3, (0.2) 246,3,no (26.3) hierarchical -1.93, (0.83)
flat -2.15, (0.99)

Experiment 4
Figure reuse-training -0.72, (0.32)

good -0.95, (0.18) 246,3,no (26.4) hierarchical -0.82, (0.35)
flat -0.85, (0.33)

Experiment 5
Figure reuse-training -0.48, (0.26)

uniform -1.3, (0.2) 246,3,yes (26.5) hierarchical -0.76, (0.30)
flat -1.01, (0.41)

Experiment 6
Figure reuse-training -0.45, (0.24)

good -0.95, (0.18) 246,3,yes (26.6) hierarchical -0.5, (0.26)
flat -0.61, (0.21)

Table 1: The table shows the mean and average of the distance of the learned model from
the original model. The distance was measure using 500 test sequences of length 40,
which were produced by sampling the original model in the small environment in
Figure 24. The bold numbers in the last column show the shortest distance for each
experiment. The “reuse-training method” produces the best results. Hierarchical
learning always produces better models than the flat learning. The “uniform”
initial model was derived from the “original” model by changing all non-zero-
entries of probability distributions to uniform. The “good” initial models where
derived from the “original” model where “0.9” values were changed to 0.6 and 0.1
values were changed to 0.4.
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Initial Localization Training Training Localization
model error data method error

before # of seq., after
training # of abs. training

states
µ %, (σ) traversed, µ %, (σ)

label
original 17.7, (14.0)

Experiment 1
232,1,yes submodels-only 38.01, (21.47)

reuse-training 33.04, (19.60)
uniform 89.2, (10.0) 738,2,yes selective-training 37.36, (21.50)

hierarchical 37.30, (21.62)
flat 66.00, (21.61)

Experiment 2
232,1,yes submodels-only 36.6, (21.75)

reuse-training 33.16, (19.13)
good 55.38, (23.88) 738,2,yes selective-training 32.84, (19.61)

hierarchical 33.2, (19.95)
flat 49.17, (22.5)

Experiment 3
reuse-training 36.69, (20.83)

uniform 89.2, (10.0) 246,3,no hierarchical 86.02, (10.59)
flat 87.81, (8.85)

Experiment 4
reuse-training 36.97, (20.26)

good 55.38, (23.88) 246,3,no hierarchical 43.89, (23.07)
flat 48.62, (23.48)

Experiment 5
reuse-training 34.76, (20.95)

uniform 89.2, (10.0) 246,3,yes hierarchical 60.45, (23.06)
flat 69.55, (20.99)

Experiment 6
reuse-training 35.17, (20.29)

good 55.38, (23.88) 246,3,yes hierarchical 36.60, (20.28)
flat 45.47, (22.25)

Table 2: The table shows the localization error which was computed using the 500 test se-
quences of length 40. The “reuse-training” method produces the best models with
an exception in experiment 2 where “selective-training” is slightly better. Hierar-
chical learning always produces better models than flat learning. The “uniform”
initial model was derived from the “original” model by changing all non-zero-
entries of probability distributions to uniform. The “good” initial models where
derived from the “original” model where “0.9” values were changed to 0.6 and 0.1
values were changed to 0.4
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Figure 26: The graphs describe the fit to the training data during experiments 1 through 6.
In almost all the plots, the flat POMDPs fit the training data better. Nonethe-
less, during testing the flat POMDPs performed the worst. This suggests that
flat POMDPs overfit the data.
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position the “reuse-training” method produces good results both in robot localization
and in distance of the learned models from the original (Experiments 1, 3, and 5).

• From Tables 1 and 2 we can conclude that the shorter the distance to the learned
models from the original model, the better the robot was able to localize.

• Almost all of the log-likelihood plots during training show that the EM learning
algorithm for POMDPs fits the training data better. Nonetheless, during testing the
models trained with the EM learning algorithm for POMDPs performed the worst.
This observation shows that the EM learning algorithm for POMDPs over-trains the
learned models (compared to the hierarchical algorithms) and does not generalize well
to unseen test sequences.

• The “selective-training” method works almost as well as the “reuse-training” method
(Experiment 1 and 2). This is a pleasing result since the “selective-training” method
trains much faster than the “reuse-training” method and the EM learning algorithm
for H-POMDPs (see Table 3).

• It is obvious from Tables 1 and 2 that the learned models never reach the performance
of the original model. This is due to the fact that EM type algorithms converge to
local maxima and are highly dependent on the initial model. If we compare the
results of the EM algorithms in experiments 1 and 2, and in experiments 3 and 4, and
in experiments 5 and 6, we see that training that started from good initial models
produces better learned models than training that started from uniform initial models.

• Knowing the start-state of the training data produces better learned models. This
is obvious if we compare experiment 3 with experiment 5, and experiment 4 with
experiment 6.

• The worst results were produced in experiment 3 where we started with uniform initial
models and did not provide the initial starting position.

• As the size of the training data increases so does the performance. Despite the fact
that Experiments 1 and 2 use shorter length sequences than Experiments 3, 4, 5, and
6, they produce better learned models, mainly due to the significantly larger number
of training sequences provided.

We also measured the training times for “short” length sequences (sequences that were
collected through two abstract states) and the different learning methods. Table 3 sum-
marizes the results. For short training sequences the “selective-training” method is much
faster than both the “flat” and “hierarchical” training methods. Even though the time
complexity of the “hierarchical” training methods is O(NT 3), for short training sequences
they are faster than flat models whose time complexity is O(N2T ). This is due to the fact
that the number of states becomes a more significant factor than the length of training
sequences.

We also trained hierarchical POMDP models for the small floor plan (Figure 24), using
robot data from the Nomad 200 simulator, and data with the real robot Pavlov from the

41



Experiment Training method Time (sec)/epoch
1, 2 selective 449

flat 3722
hierarchical 1995

Table 3: The table shows the training times for short training sequences and different train-
ing methods. All training times were calculated on a 900 MHz Athlon processor
running Redhat Linux 7.1

actual 3rd floor in Figure 24. The purpose of these experiments was to investigate how well
the learned models would perform in the robot navigation task.

For both environments we simply trained all submodels of the abstract states separately.
To collect data we ran the robot separately in each abstract state. In corridors we would
collect data by simply running the robot from every entry state of a corridor to the opposite
exit state. In junction states, we would run the robot from every entry state to each one of
the other exit states.

Learning started from a “bad” model, which was created from some known “good”
original model by dividing the total probability from the self and transition to the correct
state, equally among the two. The “good” original model was hand-tuned, such that it
would provide reasonable navigation behavior when used. In addition, we used the “good”
model for localization comparisons with the “bad” and “learned” models.

Because it is hard to compute the true location of the robot, we compared the most
likely state given by the “bad” and “learned” model with the most likely state given by the
“good” original model. Since the “good” model is simply based on our insight of what the
parameters should be, we relaxed the MLS comparison. The error increases only when the
distance between two states is longer than a single transition. That is, we don’t increase
the error if the most likely state given by the “good” model is the same, or adjacent to the
most likely state given by the “learned” model.

Localization results are summarized in Table 4. It is obvious that after training, the
learned models result in low error robot localization. Also note that unlike Table 2 in the
previous section, the localization error here is quite low. This is due to the relaxed way of
measuring the localization error and the fact that the initial observation models of the bad
model were fairly descent (same as the “good” original model).

7.2 Learning experiments in the DBN representation

To investigate the advantages of learning H-POMDPs represented as DBNs, we performed
experiments using the small simulation environment shown in Figure 24. First we created
artificial data using a good hand-coded model (which we call the “original” model) for which
all transitions to the correct state were set to 0.9 and the rest of the probability mass, 0.1,
was divided between self and overshoot-by-one transitions. For the sensor models we ini-
tialized the probabilities of perceiving the correct observation to be 0.9 and all probabilities
of perceiving an incorrect observation to be 0.1. The control policy was a random walk.
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Training method Training Test data Localization Localization
data error before error after

training training
µ %, (σ) µ %, (σ)

submodels-only 30 seq. 14 seq. 41.8, (21.4) 11.8, (18.0)
from from

Nomad 200 Nomad 200
simulator simulator

(Fig. 24.(a)) (Fig. 24.(a))
43 seq. 7 seq. 64.9, (20.9) 2.8, (3.8)

from Pavlov from Pavlov
in real floor in real floor
(Fig. 24.(b)) (Fig. 24.(b))

Table 4: The table show the localization error as to the true state of the robot before and
after training, in the Nomad 200 simulator and in the real environment with the
actual robot Pavlov.

We then used the artificial data to train four different models. We trained a flat POMDP,
a hierarchical POMDP, a hierarchical POMDP with factored orientation (see Figure 27),
and a hierarchical POMDP with factored orientation and for which we did parameter tying
on the observation model. With parameter tying we mean that we treat certain observation
probability parameters as being the same. For example, the probability of wall on the left
side when the robot is facing east is the same as the probability of a wall on the right side
when the robot is facing west. We used “uniform” initial models for training, where all
non-zero parameters in the “original” model were changed to uniform (e.g., 〈0.1, 0.9〉 was
changed to 〈0.5, 0.5〉). Also, we used a uniform Dirichlet prior on all non-zero probabilities,
to prevent us from incorrectly setting probabilities to zero due to small training sets.

For testing, we created 500 sequences of length 30 by sampling the “original” model
using a policy that performs a random walk. We evaluated the different models using log-
likelihood relative to the original model as we did in Section 7.1. In addition , we compared
the algorithms in terms of localization and computation time. The relative log-likelihood
results are shown in Figure 28. It is clear that the hierarchical models require much less
data than the flat model. Furthermore, factoring and parameter tying help even more.

To assess the ability of the models to estimate the robot’s position after training (a
more relevant criterion than likelihood), we computed the total probability mass assigned
to the true state sequence (which is known, since we generated the data from a simulator):∑T

t=1 bt(s), where bt(s) = P (Xt = s|y1:t, u1:t) is the belief state at time t. If the belief state
was a delta function, and put all its mass on the correct state, then

∑T
t=1 bt(s) = T ; this

is the score that an algorithm with access to an oracle would achieve. The best score that
is achievable without access to an oracle is obtained by computing the belief state using
the original generating model; this score is 87%. The scores of the other algorithms are
shown in Figure 29. (This is the total probability mass assigned to the true states in all
the test sequences.) The rank ordering of the algorithms is the same as before: the flat
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U1 U2 U3

L2
1 L2

2 L2
3

E1 E2 E3

L1
1 L1

2 L1
3

Θ1 Θ2 Θ3

Y1 Y2 Y3

Figure 27: A 2-level factored H-POMDP represented as a DBN. We refer to this model as
the “factored hierarchical DBN”. The arcs from the action node, Ut, are shown
dotted merely to reduce clutter. The L2

t nodes denote the abstract state, the
L1

t nodes denote the concrete location, the Θt nodes denote the orientation, the
Et nodes denote the state of the exit variable, and Yt denotes the state of the
observation variables.

model performs the worst, then hierarchical, then factored hierarchical, and the factored
hierarchical with tying is the best.

To investigate the scalability of our algorithm, we also plotted the time per training
epoch with respect to the length of the training sequence (see Figure 30). The results are
shown in Figure 30. The O(T 3) behavior of the original H-POMDP algorithm is clear;
the flat and DBN algorithms are all O(T ), although the constant factors differ. The flat
algorithm was implemented in C, and therefore runs faster than the hierarchical DBN
(although not by much!); the factored hierarchical DBN is the fastest, even though it is also
implemented in Matlab, since the state space is much smaller.

To verify the applicability of these ideas to the real world, we conduced an experiment
with a B21R mobile robot. We created a topological map by hand of the 7th floor of the
MIT AI lab; this has about 600 production states (representing 1m × 1m grid cells), and
38 abstract states (representing corridors, junctions and open space). We manually drove
the robot around this environment, and collected data using a laser-range finder. The data
was classified using a neural network to indicate the presence of a wall or opening on the
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front, left, right and back sides of the robot. We then created several initial models, based
on the true topology but with unknown (uniform) observations, and tried learning their
parameters from several training sequences totaling about 600 observations (corresponding
to about 3 laps around the lab). The results are qualitatively similar to the simulation
results. The tied model always does significantly better, however, since it is able to learn
the appearance of all 4 directions in a single pass through a corridor.

7.3 Structure learning experiments

In this section we show hat it is possible to learn the structure at the abstract level just by
doing parameter estimation in the H-POMDP. We assume that the initial abstract transi-
tion matrix is almost fully interconnected (ergodic), but with the constraint that corridor
states could only connect to junction states, and vice versa. The resulting parameters,
when thresholded, recovers the correct topology. By contrast, attempts to learn flat HMM
topology using EM have generally been considered unsuccessful, with the notable exception
of (Brand, 1999), who uses a minimum entropy prior to encourage structural zeros.

7.3.1 Learning the structure of a three level hierarchy

For the simulated environment in Figure 24 we trained an H-POMDP model using 245
short training sequences (collected by sampling through two abstract states) labeled with
their starting positions. We used three type of training methods, the “selective-training”
method, the standard EM learning algorithm for H-POMDPs, and the standard flat EM
learning method for POMDPs. We trained the model starting from different sets of initial
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parameters. Each set of parameters defined a different type of “semi-ergodic” model. Below
we describe the different initial models:

1. A hierarchical model “model-1”, where every exit point of every junction abstract
state is connected to the correct corridor and entry-state, and all entry points of other
corridors whose size is different than the correct corridor. Every corridor is connected
to a single junction. A partial example of this type of initial model is shown in Figure
31.

2. A hierarchical model “model-2”, where connections from junctions are same as “model-
1”. To investigate the strength of our approach in recovering the correct structure as
the ergodicity at the abstract level gets larger, we made this model more ergodic. We
connected every corridor abstract state to every junction abstract state.

Figure 31: The bold arrow indicates the correct structure for the particular south exit point
of the junction abstract state. The dotted arrows indicate possible adjacent
nodes. We chose adjacent nodes to be corridors of different size from the correct
corridor.

To evaluate each model we examine the percentage of the total transition probability that
is associated with the correct structure of the environment at the abstract level. The arrows
in Figure 32 define the correct structure. In an ergodic model there are more connections
among states (at level 2) than the arrows shown in the figure.
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Correct structure was measured as follows:

% correct structure =

∑
s∈S,a∈A

∑
s′∈S′ T (s′|s, a)∑

s∈S,a∈A

∑
s′′∈S′′ T (s′′|s, a)

,

where S′ is the set of states that belong to abstract states different from the parent of s,
p(s), such that s′ and s belong to topologically adjacent abstract states. S′′ is the set of
states that belong to abstract states different from the parent of s, p(s) (s and s′′ do not
necessarily belong to topologically adjacent abstract states). In order to be able to compare
flat and hierarchical learning algorithm the transition functions T (s′|s, a) and T (s′′|s, a)
refer to the transition probabilities when the model is represented as a flat POMDP.

Overall, our evaluation criterion finds the percentage of transition probability associated
with the arrows in Figure 32 over the total transition probability associated with all the
arrows (all arrows starting from the same positions as the arrows shown in Figure 32). Table
5 summarizes the results of all the models, and shows that the hierarchical models improve
the structure much more than the flat models. Figure 32 shows the transition probabilities
of the correct structure before and after learning for initial “model-1”.

Model Correct structure Training method Correct structure
error before error after

training training
selective-training 15.47 %

model-1 46.91 % hierarchical 15.63 %
flat 41.79 %

selective-training 59.36 %
model-2 96.02 % hierarchical 60.71 %

flat 87.20 %

Table 5: The table shows the percentage of transition probabilities that do not belong to the
correct structure before and after learning for the three level hierarchical model.
For model-2 the results are not as good as model-1 mainly due to the high initial
error. Nonetheless, in both cases the hierarchical approaches improve the structure
considerably, while the flat approaches do not.

7.3.2 Learning the structure of a four level hierarchy

We also carried out structure learning experiments on a four level hierarchical model. The
second and third level are shown in figure 33. In this set of experiments we started with
two types of initial models:

1. In the first model, “4level-1”, only the structure at level 2 was semi-ergodic where
every state at level two was connected to every other state at level 2.

2. In the second model, “4level-2’, all states at the second level where connected the
same as in the first model “4level-1”. At the third level (for all submodels of the
abstract states at level 2) corridor states were connected to all junction states, and
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Figure 32: The figure on the left shows the transition probabilities that belong to the cor-
rect structure before training for “model-1”. The figure on the left shows the
transition probabilities that belong to the correct structure after training for
“model-1”, using the “selective-training” method. The probabilities shown are
the ones corresponding to the H-POMDP model when converted to flat.

junction states were connected to all corridor states whose size was different from the
correct corridor (similar to “model-2” in section 7.3.1).

Table 6 summarizes the result for the different initial models and different training meth-
ods. In this experiment, 17 long training sequences were used. For model “4level-1”, both
the EM learning algorithm for H-POMDPs and the EM learning algorithm for POMDPs
learn the structure of the model equally well. The reason the EM learning algorithm for
POMDPs performs this well is because we have used long data training sequence across the
abstract states at level 2, and the fact that the abstract states at level 2 look sufficiently
different, thus enabling the EM learning algorithm for POMDPs to discover the correct
state sequence.

For model “4level-2” however, the EM algorithm for learning H-POMDPs outperforms
the EM algorithm for learning POMDPs. The reason is that by adding ergodicity at level
3 the abstract states at level 2 do not look substantially different and as a result the EM
algorithm for learning POMDPs is unable to discover the correct sequence of states.

In all the above structure learning experiments the hierarchical algorithms perform
better or equally well as the flat. They perform significantly better when the training
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data sequences are short. Increasing the level of hierarchy requires longer training data to
learn the relationships at the highest level. Having longer sequences enables flat algorithms
to perform as well, specially when the structure uncertainty is small. As the structure
uncertainty increases the hierarchical approaches outperform the flat ones despite the long
data sequences.

Model Correct structure Training method Correct structure
error before error after

training training
second level third level second level third level

4level-1 77.27 % 4.31 % hierarchical 13.25 % 0.22 %
flat 12.31 % 0.20 %

4level-2 82.46 % 83.61 % hierarchical 32.50 % 49.90 %
flat 43.85 % 55.34 %

Table 6: The table shows the percentage of transition probabilities that do not belong to the
correct structure before and after learning, for the four level hierarchical models.

7.4 Planning experiments using the H-POMDP structure

In the small navigation environment (Figure 24), we set up two navigation tasks. One task
was to get to the four-way junction in the middle of the environment (node I7) and the
other task was to get to the middle of the largest corridor (between nodes I2 and I12 ). The
reason we set up these two navigation tasks is because they form two opposite and extreme
situations. The four-way junction emits a unique observations in the environment, while
the middle of the largest corridor is the most perceptually aliased location. Experiments
in the small navigation environment were done using the Nomad 200 simulator. We also
performed experiments in the Nomad 200 simulator using the larger environment. In these
set of experiments, again we set up two navigation tasks, where one was to reach the
four-way junction (node I9), and the other was to reach the middle of the largest corridor
(between nodes I2 and I 16). Additionally, we performed experiments using the real robot
Pavlov in the real environment. In this set of experiments we formulated 5 different goals.

For each navigation task, we created macro-actions for every abstract state. For every
abstract state, we created one macro-action for each of its exit states (a macro-action that
would lead the robot out of the abstract state through the particular exit state). For the
abstract state that contained the goal location we created an additional macro-action that
could take the robot to the goal state. We then gave a global reward, where the robot is
penalized by −1 for every primitive action executed, and rewarded it by +100 reward for
primitive actions leading to the goal state. In this way the robot would learn to choose
shorter routes so as to minimize the cost. Based on the reward function we computed
the reward and transition models of the macro-actions, and then computed a plan using
macro-actions over the children of the root.

For the small simulated environments we compared the H-MLS algorithm with the flat
most likely state strategy (F-MLS), and the H-QMDP algorithm with the flat QMDP (F-
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Figure 33: This is a four level representation of the environment where entire sections of the
building where grouped into abstract states at a higher level. The three large
dashed polygons represent the abstraction at level 2 while the smaller rectangles
inside the polygons represent the spatial abstraction at level 3. The bold arrows
indicate the correct structure at level 2 and the number next to the arrows
indicate the transition probabilities before any learning for model “4level-2”.
The probabilities shown are the ones that belong to the correct structure when
the model is converted to flat.

QMDP). For each navigation task we started the robot 3 times from 6 different locations
and recorded the number of steps it took to reach the goal. We also recorded the number
of times the robot was successful in reaching its goal, over the total number of runs. The
results are summarized in Table 7. All experiments were started both from a uniform initial
belief state, where the starting position was not known, and from a localized initial belief
state where the starting position was known.

It is evident from Table 7 that the hierarchical approaches perform better than the flat.
The MLS strategies produce 100% success due to the randomness in the selection of the
peak of the belief state. The QMDP approaches perform better than the MLS approaches.
However, the flat QMDP approach has a low success rate. Starting from known initial
positions, all approaches perform the same.

For the large simulated environment we tested all the algorithms by starting the robot
3 times from 7 different locations and measured the steps it took to reach the goal. The
results are summarized in Table 8. We also ran the robot in the real environment using the
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Envir. Initial Planning Steps Macro Success
position method steps

small sim. unknown H-MLS 56.1 15.5 100 %
F-MLS 73.15 100 %

H-QMDP 47 9.6 100 %
F-QMDP 47 66.6%

known All 29 5.5 100 %

Table 7: The table shows the average number of primitive steps, and the average number
of decisions at the abstract level. The results are for the small environment in the
Nomad 200 simulator.

H-POMDP model. In this experiment we started the robot from 11 different locations and
used 5 different goal destinations. The results are summarized in Table 8.

Envir. Initial Planning Steps Macro Success
position method steps

large sim. unknown H-MLS 90.5 15.8 100 %
F-MLS 163 93 %

H-QMDP 74 12.5 85 %
F-QMDP 28 %

known All 46 6.7 100 %
large real unknown H-MLS 130 22.3 100 %

known H-MLS 53.8 7.2 100 %

Table 8: The table shows the average number of primitive steps, and the average number
of decisions at the abstract level. The results are for the large environment in the
Nomad 200 simulator, and in the real world.

It is obvious from Table 8 that the hierarchical approaches outperform the flat when
the starting belief state is uniform. Due to the low success rate in the flat F-QMDP
method (starting from unknown position) we did not report the number of steps. Failures
to reach the goal occur when the robot gets stuck into loop behavior. The MLS strategies
produce high success rates due to the randomness in choosing the peak of the belief state.
When the initial position is known, all the methods produce the same result. For the real
environment we ran the most successful hierarchical approach, the H-MLS, which proved to
work successfully. Comparing Table 8 with Table 7, we can conclude that the hierarchical
approaches scale more gracefully than flat approaches to large environments.

We also measured the time it took for the robot to construct a plan, including the time
to construct the macro-action that leads to the goal state. The results are summarized in
table 9 where for the H-POMDP model it takes significantly less time to compute a plan.
The time complexity of the value-iteration algorithm is O(S2T ) where S is the number of
states and T is the planning horizon. If we construct perfect H-POMDP trees where all
leaves are at the same level, and each abstract state has the maximum number of children,
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then the time complexity of value iteration over the children of the root would be O(S
2
d NT ),

where S is the total number of production states, d is the depth of the tree and N is the
maximum number of entry states for an abstract state. Usually we don’t construct perfect
trees, and therefore, time complexity lies between O(S

2
d NT ) and O(S2T ).

Environment Goal location Model Planning time (sec)
I7 H-POMDP 2.11

small POMDP 15.34
I2-I12 H-POMDP 5.7

POMDP 14.67
large I9 H-POMDP 5.05

POMDP 88.02
I2-I16 H-POMDP 26.12

POMDP 83.57

Table 9: The table shows the planning times for the different environments and models.
The planning times were computed on a 900 MHz Athlon processor

It is apparent from Table 9 that hierarchical plans are constructed faster than flat plans
due to the small number of states at the abstract level, and due to the fact that we can reuse
precomputed macro-actions. For each navigation task only one new macro-action needs to
be computed, the one for the abstract state which contains the goal location.

We also performed experiments with learned H-POMDP models to investigate the effect
of learning H-POMDP models on the navigation system as a whole. The experiments were
done in the Nomad 200 simulator using the smaller navigation environment. The overall
training procedure was done as follows:

1. First we started with an initial H-POMDP model. In this H-POMDP model we set
all probabilities of observing the correct observation to be 0.6. In all corridor states
we set the overshoot transition to 0.6, the self transitions to 0.2, and transitions to
the correct states to 0.2. In all junction states, we set the self transitions to 0.5 and
transitions to the correct state to 0.5. We trained this model by simply training all
the submodels of the abstract states separately (“submodels-only” strategy). Training
data was collected by running the robot separately in each abstract state. In corridors,
we would collect data by simply running the robot from every entry state of a corridor
to the opposite exit state. We collected 30 training sequences in this manner, two for
each corridor.

2. Given the trained model we were able to run different navigation tasks. For each
navigation task we collected data for the “selective-training” strategy. A data sequence
was recorded if the robot entered an abstract state and was 99% sure that it was at the
particular entry state. Recording stopped when two abstract states were traversed.
We collected 38 training sequences in this manner. We then retrained the model
learned in the first stage, using the new training data, with the “selective-training”
method.
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To evaluate the different stages of learning we started the robot from 12 different loca-
tions and provided the initial starting position. The goal was to get to the four-way junction
in the middle of the environment (node I7). Using our hierarchical planning and execution
algorithm H-MLS, we measured the average number of steps, the success rate of reaching
the goal, and the mean of the average entropy per run. We measured the average entropy
of all runs to be H̄ = 1

T

∑
t Ht, where T is the total number of steps for all runs. Ht is

the normalized entropy of the probability distribution over all production states, which is
computed as:

normalized entropy =
entropy

maximum entropy
=

−∑S
s=1 P (s) log P (s)

−∑S
s=1 1/|S| log(1/|S|)

=
−∑S

s=1 P (s) log P (s)
− log(1/|S|) =

−∑S
s=1 P (s) log P (s)

log(|S|) .

A run was considered a failure if the robot traveled more than 70 steps and still was unable to
reach the goal. We measured the average number of steps in reaching the goal over successful
trials, but we measured the average entropy over both successful and unsuccessful trials.
The results are summarized in Table 10.

Training stage Average number of steps Average entropy Success
before training 51 0.29 16.6 %
submodels-only 27 0.14 100 %

selective-training 27 0.10 100 %

Table 10: The table shows the average number of steps to reach the goal, and average en-
tropy per run after every training stage. Simply training the submodels provides
an H-POMDP model that can be used successfully for robot navigation tasks.
Retraining the already learned model with additional data from the navigation
tasks improves robot localization.

7.5 Planning experiments for POMDPs with generic macro-actions

We tested our second algorithm by applying it to the problem of robot navigation domain in
the large environment in Figure 24. A macro-action is implemented as a behavior (could be
a POMDP policy) that takes observations as inputs and outputs actions. In our experiments
we have a macro-action for going down the corridor until the end.

We ran the algorithm starting with resolution 1. When the average number of training
steps stabilized we increased the resolution by multiplying it by 2. The maximum resolution
we considered was 4. Each training episode started from the uniform initial belief state and
was terminated when the four-way junction was reached or when more than 200 steps were
taken. We ran the algorithm with and without the macro-action go-down-the-corridor. We
compared the results with the QMDP heuristic which first solves the underlying MDP and
then given any belief state, chooses the action that maximizes the dot product of the belief
and Q values of state action pairs: QMDPa = argmaxa

∑|S|
s=1 b(s)Q(s, a).
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With reward shaping The learning results in Figure 34 demonstrate that learning with
macro-actions requires fewer training steps, which means the agent is getting to the goal
faster. In addition, training with-macro-actions produces better performance as we increase
the resolution. Training with primitive actions only does not scale well as we increase the
resolution, because the number of states increases dramatically.

In general, the number of grid points used with or without macro-actions is significantly
smaller than the total number of points allowed for regular discretization. For example, for
a regular discretization the number of grid points can be computed by the formula given
in (Lovejoy, 1991), (r+|S|−1)!

r!(|S|−1)! , which is 5.410 for r = 4 and |S| = 1068. Our algorithm with
macro actions uses only about 1000 and with primitive actions only about 3500 grid points.
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Figure 34: The graph on the left shows the average number of training-steps per episode as
a function of the number of episodes. The graph on the right shows the number
of grid-points added during learning. The sharp changes in the graph are due
to the resolution increase. Learning with macros requires fewer grid points and
fewer steps in reaching the goal. The performance gets better as the resolution
increases. Learning with primitive actions only requires more points. Due to the
larger number of points required as the resolution increases, performance does
not improve monotonically.

We tested the policies that resulted from each algorithm by starting from a uniform
initial belief state and a uniformly randomly chosen world state and simulating the greedy
policy derived by interpolating the grid value function. We tested our plans over 200
different sampling sequences and report the results in Figure 35. A run was considered a
success if the robot was able to reach the goal in fewer than 200 steps.

From Figure 35 we can conclude that the QMDP approach can never be 100% success-
ful. It is also evident from Figure 35 that as we increase the resolution, the macro-action
algorithm performs better while the primitive-action algorithm performs worse, mainly due
to the fact that it adds more grid-points. It is also obvious from the above figures that with
macro-actions we get a better quality policy, which takes fewer steps to reach the goal, and
is more successful than the QMDP heuristic, and the primitive-actions algorithm.
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Figure 35: The figure shows the success percentage for the different methods during testing.
The results are reported after training for each resolution.

Without reward shaping We also performed experiments to investigate the effect of
reward-shaping. Figure 36 shows that with primitive actions only, the algorithm fails com-
pletely. However, with macro-actions the algorithm still works, but not as well as with
reward-shaping.
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Figure 36: The graph on the left shows the average number of training-steps (without re-
ward shaping). The figure on the right shows the success percentage. The
primitive actions only algorithm fails completely.

Information gathering Apart from simulated experiments we also wanted to compare
the performance of QMDP with the macro-action algorithm on a platform more closely
related to a real robot. We used the Nomad 200 simulator and describe a test in Figure 37
to demonstrate how our algorithm is able to perform information gathering, as compared
to QMDP.

56



GOAL

START

J1

J5

J3
J2

J4

Figure 37: The figure shows the actual floor as it was designed in the Nomad 200 simulator.
For the QMDP approach, the robot starts from START with uniform initial
belief. After reaching J2 the belief becomes bi-modal concentrating on J1 and
J2. The robot then keeps turning left and right. On the other hand, with
our macro-action algorithm, the robot again starts from START and a uniform
initial belief. Upon reaching J2 the belief becomes bimodal over J1 and J2. The
agent resolves its uncertainty by deciding that the best action to take is the
go-down-the-corridor macro, at which point it encounters J3 and localizes. The
robot then is able to reach its goal by traveling from J3, to J2 , J1, J4, and J5.

8. Conclusions

In this paper we have described learning and planning algorithms for POMDPs that take
into consideration spatial and temporal abstraction. We demonstrated the advantages of
our approach in the domain of robot navigation. There is a diverse literature on robot
navigation. One of the most popular approaches, is simultaneous localization and mapping
(SLAM), which can build on-line maps and localize the robot at the same time. Even though
this framework has been recently shown to scale to really large navigation domains (Leonard
& Newman, 2003), (Paskin, 2003), (Thrun, Liu, Koller, Ng, Ghahramani, & Durrant-
Whyte, 2003), it is still just a specific approach to robot navigation. Our algorithms on the
other hand, do a an excellent job is solving the problem of robot navigation while at the same
time providing a general framework for sequential decision making under uncertainty. Our
approach exploits spatial and temporal abstractions and as a result perform significantly
better than analogous flat approaches.

Specifically, the results show that the hierarchical learning algorithms produce learned
models which are statistically closer to the generative model according to our distance met-
ric. Also, the hierarchically learned models produce better robot localization. Additionally,
the hierarchical learning algorithms are better at inferring the structure of the environment
at the abstract level than the EM algorithm for learning flat POMDPs. The approximate
training strategies which take advantage of short length data sequences have their own ad-
vantages. While the “reuse-training” method converges quickly (takes a small number of
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training epochs) and usually produces better models than all other learning algorithms, the
“selective-training” method in practice trains faster (takes less time per training epoch)
than any of the learning algorithms.

In general the advantage of hierarchical learning methods is their ability to better recog-
nize the relationship between states which are spatially far apart (due to the way transitions
models are learned at the abstract levels). A disadvantage is that training data sequences
need to start at some root child and finish at some root child. This implies that training
sequences are in some respect labeled. For example, in corridor environments training se-
quences need to start at an entry state of an abstract state (which may be a corridor or
a junction) and finish at the exit state of an abstract state. Nonetheless, this was our as-
sumption, in that corridor navigation exhibits structure, such as sequences of observations
where the corridors are followed by junctions and junctions by corridors.

Our planning algorithms use both spatial and temporal abstraction and combine the
ideas of SMDP planning and partial observability. Using these algorithms the robot is able
to execute navigation tasks starting from no initial positional knowledge, in fewer steps than
flat POMDP strategies. The advantages of these algorithms were even more apparent as
the environment model got larger. Other advantages of hierarchical planning is that macro-
action models can be computed and evaluated once, and then reused for multiple navigation
tasks. Additionally, the fact that abstract plans are mappings from entry states (which is a
small part of the total state space) to macro-actions reduces planning time. The ability to
successfully execute navigation tasks starting from an unknown initial position makes this
navigation system a strong candidate among state of the art navigation systems. Moreover,
we have introduced an RL approach for POMDPs with macros that can be potentially
applied to arbitrary POMDPs.

A limitation of our system is that a good initial H-POMDP model needs to be provided.
Therefore, we are currently exploring structure learning. We are interested in learning
the number of states as well as the vertical and horizontal relationships. We are investi-
gating general Bayesian model selection methods (Stolcke & Omohundro, 1992), (Brand,
1999), techniques for learning compositional hierarchies (Pfleger, 2002) and other general
approaches from natural language processing (de Marcken, 1996). We are also exploring
methods for automatically learning the topology (structure) of spatial environments while
at the same time estimating the robot’s position. It seems that the H-POMDP model as it
is currently applied in robot navigation naturally combines topological (abstract levels) and
metric (production states) approaches for robot navigation and mapping. We are beginning
to explore methods that combine topological and metric SLAM (Tomatis, Nourbakhsh, &
Siegwart., 2003).

We are also exploring the dynamic creation of macro-actions and the application of
the algorithms to arbitrary POMDP problems, that have appeared in the literature. In
addition we are attempting to solve some real world problems. We are currently applying
hierarchical POMDP models and planning algorithms to the problem of activity monitoring
(e.g., cooking) and prompting. In this scenario a person uses objects in his/her house (all
marked with RFID tags). The problem is to build hierarchical models of activity for that
person, monitor the person’s behaviors and guide the person in completing his/her activities
when needed.
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In the future we will try to combine the idea of decomposing the hidden state space with
the idea of explicit planning with macros over belief space. In many real world situations
it might be the case that an agent may only need to reduce its uncertainty over a specific
set of variables rather than the whole set. We believe that a desirable way of scaling up the
problem of sequential-decision making under uncertainty is by discovering generic primitives
that can be combined for learning more complicated behaviors. We have taken some initial
steps in this paper by examining primitives in terms of hidden state space abstractions
belief discretizations, factored representations and temporal abstractions.
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Appendix A. Table of H-POMDP symbols

Symbol Definition
Cs

p the set of production children of abstract state s

Cs
a the set of abstract children of state s

Cs
n the set of entry states that belong to abstract states children of s

Xs the set of exit states that belong to abstract state s

N s the set of entry states that belong to abstract state s

p(s) the parent of state s

sx exit state that belongs to abstract state s

sn entry state that belongs to abstract state s

T (s′n|sx, a) horizontal transition probability
V (s′n|sn) vertical transition probability
O(z|s, a) observation probability
R(s, a) immediate reward function
b(s) belief of state s

TD(sx|i, µ) Discounted transition model
RD(i, µ) Discounted reward model

M s the set of macro-actions available under abstract state s

πs
µ policy of macro-action µ under abstract state s

Table 11: Table of H-POMDP symbols

Appendix B. Computing α, β, ξ, and χ

B.1 Computing α

We can calculate the α variable recursively from the leaves of the tree to the root in ascending
time order as follows:

• For T = 1...N − 1 where N is the sequence length and for level = D...1 where D is
the tree depth, we calculate the α terms. For all internal states we calculate the α
terms for all sub-sequences t, t + k and for the root only the sequence 1, T .

1. If s is a leaf state at depth = level, then for t = T we can calculate α as shown
in Equation 9 and described in Figure 38. When p(s) = root we only use this
equation for t = 1, because an observation sequence starts from the root and can
only start at time t = 1.

α(p(s)n, s, t, t) = V (s|p(s)n)O(zt|s, at−1) (9)

2. If s is a leaf state at depth = level then for t = 1...T − 1, and k = T − t we can
calculate α as shown in Equation 10 and described in Figure 39. The equation
computes the probability of an observation sequence that started at time t from
entry state p(sn) and finished at a child state s at time t+k. The computation is
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n x

s

p(s)

Figure 38: Equation 9 computes the probability that at time t the parent state of product
state s, p(s) produces a single observation zt. The observation is produced by a
vertical activation into product state s from entry state p(s)n.

done iteratively by considering the probability of the observation sequence which
finished at some child s′x a time step earlier (t + k − 1). When p(s) = root we
only use this equation for t = 1, because an observation sequence starts from the
root and can only start at time t = 1.

α(p(s)n, s, t, t + k) =
 ∑

s′x∈C
p(s)
x ∪C

p(s)
p

α(p(s)n, s′x, t, t + k − 1)T (s|s′x, at+k−1)


 O(zt+k|s, at+k−1)

(10)

x

1 2n xs’ s’ s

n p(s)

Figure 39: Equation 10 gives us the probability that the parent of the product state s,
p(s) produced observations from time t to time t + k, (k ≥ 1) and that the last
observation was produced by product state s. s′x is either the exit state of some
abstract state s′ (such as s′1x

) or a product state s′ (such as s′2).

3. If s is an abstract state at depth = level then for t = 1...T , and k = T − t we
can calculate α as shown in Equation 11 which can be better understood with
Figure 40. When p(s) = root we only use this equation for t = 1.
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α(p(s)n, sx, t, t + k) =

∑
sn∈Ns

V (sn|p(s)n)


 ∑

ix∈Cs
x∪Cs

p

α(sn, ix, t, t + k)T (sx, |ix, at+k)




+


k−1∑

l=0


 ∑

s′x∈C
p(s)
x ∪C

p(s)
p

α(p(s′)n, s′x, t, t + l)T (sn|s′x, at+l)





 ∑

ix∈Cs
x∪Cs

p

α(sn, ix, t + l + 1, t + k)T (sx, |ix, at+k)







(11)

x n x

n x

i

s

2

s’2

i n x

p(s)

n 1

1

s’

Figure 40: The figure illustrates Equation 11 which is used for situations where the parent
of state s, p(s) starting from entry state p(s)n produced observations from t to
t+k (where k ≥ 0), and at time t+k abstract state s was exited from sx. We need
to sum over all lengths of observation sequences that could have been produced
by abstract state s. That is, s could have produced all observations zt...zt+k, or
in the other extreme zt, zt+k−1 could have been produced by the adjacent states
of s (such as s′1 and s′2), and only the last observation zt+k produced by s.

B.2 Computing β

The beta variable can be calculated recursively from leaves to root. The time variable is
considered in descending order as follows:

• For level = D...1 where D is the tree depth.

1. If s is a leaf state at depth = level, for t = N − 1...1 (where N is the sequence
length and T = N − 1), Equation 12 computes the probability of a single ob-
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servation and is described in Figure 41. When p(s) = root we only use these
equations for t = T .

β(p(s)x, s, t, t) = O(zt|s, at−1)T (p(s)x|s, at), p(s) �= root (12)

β(p(s), s, t, t) = O(zt|s, at−1), p(s) = root (13)

n xp(s)

s

Figure 41: The figure illustrates Equation 12 which computes the probability that at time
t the product state s produced observation zt and then the system exited the
abstract state p(s) from exit state p(s)x.

2. If s is an abstract state at depth = level, for t = N −1...1, Equation 14 computes
the probability of observation zt and is described in Figure 42. When p(s) = root
we only use these equations for t = T .

β(p(s)x, sn, t, t) =

∑
sx∈Xs


 ∑

in∈Cs
n∪Cs

p

V (in|sn)β(sx, in, t, t)


 T (p(s)x|sx, at), p(s) �= root

(14)

β(p(s), sn, t, t) =
∑

sx∈Xs


 ∑

in∈Cs
n∪Cs

p

V (in|sn)β(sx, in, t, t)


 , p(s) = root (15)

3. For t = N − 2...1

(a) If s is a leaf state at depth = level, then for k = 1...N−1−t, we can calculate
β as shown in Equation 16 and described in Figure 43. When p(s) = root
we only use this equation for t + k = T .

β(p(s)x, s, t, t + k) =

O(zt|s, at−1)


 ∑

s′n∈C
p(s)
n ∪C

p(s)
p

T (s′n|s, at)β(p(s)x, s′n, t + 1, t + k)


 (16)
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n x

n xs

2n x
1i i

p(s)

Figure 42: Equation 14 computes the probability that at time t that any of the children of
abstract state s (such as i1 and i2) has produced observation zt and then the
parent of s p(s) was exited from exit state p(s)x.

n x

s s’2 n x
1s’

p(s)

Figure 43: The figure illustrates Equation 16 which defines the probability that at time t
the product state s produced observation zt and its parent p(s) continued to
produce observations zt+1...zt+k and exited at time t + k from exit state p(s)x,
where k ≥ 1 (or at least two observations are produced).

(b) If s is an abstract state at depth = level, then for k = 1...N − 1 − t, we
can calculate β as shown in Equation 17 and described in Figure 44. When
p(s) = root we only use these equations for t + k = T .
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β(p(s)x, sn, t, t + k) =

∑
sx∈Xs


 ∑

in∈Cs
n∪Cs

p

V (in|sn)β(sx, in, t, t + k)


 T (p(s)x|sx, at+k)

+


k−1∑

l=0


 ∑

in∈Cs
n∪Cs

p

V (in|sn)β(sx, in, t, t + l)





 ∑

s′n∈C
p(s)
n ∪C

p(s)
p

T (s′n|sx, at+l)β(p(s)x, s′n, t + l + 1, t + k)





 ,

p(s) �= root

(17)

β(p(s), sn, t, t + k) =

∑
sx∈Xs


 ∑

in∈Cs
n∪Cs

p

V (in|sn)β(sx, in, t, t + k)




+


k−1∑

l=0


 ∑

in∈Cs
n∪Cs

p

V (in|sn)β(sx, in, t, t + l)





 ∑

s′n∈C
p(s)
n ∪C

p(s)
p

T (s′n|sx, at+l)β(p(s), s′n, t + l + 1, t + k)





 ,

p(s) = root

(18)

B.3 Computing ξ

To simplify calculation of the ξ variable we define two auxiliary variables called ηin and
ηout. The ηin is defined in Equation 19 and described in Figure 45.

ηin(t, sn) = P (zt, ...zt−1, s was entered at t from sn | a0, ..., at−1, λ) (19)

We can estimate ηin recursively from the root to the leaves of the tree.

1. If s is a child of the root and t = 1 we can calculate ηin as shown in Equation 20, and
for t > 1 as shown in Equation 21

ηin(1, sn) = V (sn|p(s)n), where p(s)n = root (20)

ηin(t, sn) =
∑

s′x∈C
p(s)
p ∪C

p(s)
x

α(p(s)n, s′x, 1, t − 1)T (sn|s′x, at − 1) (21)
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Figure 44: The figure describes Equation 17 which is the probability that at time t the
abstract state s, starting from entry state sn produced some observations, and
then the parent of s, p(s) continued to produce the rest of the observations and
exited at time t + k from exit state p(s)x. Since s is an abstract state we have
to consider all possible lengths of observations that could have been produced
by abstract state s. So s could have produced a single observation zt, up to all
the observations zt...zt+k, where k ≥ 1.

sn x n x

n xp(s)

Figure 45: The ηin variable defines the probability that a state sis entered at time t either
vertically or horizontally given a sequence of actions and observations up to time
t − 1.

2. If s is not a child of the root

ηin(t, sn) =

∑
p(s)n∈Np(s)

t−1∑
k=0

ηin(k, p(s)n)


 ∑

s′x∈C
p(s)
p ∪C

p(s)
x

α(p(s)n, s′x, k, t − 1)T (sn|s′x, at−1)




+ ηin(t, p(s)n)V (sn|p(s)n)

(22)
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which, is the probability that state s, which is not a root child, was entered at time t
from entry state sn. To calculate this probability we have to consider all the possible
times 0...t − 1 and all possible entry states p(s)n that the parent of state s, p(s) was
entered.

The ηout variable is defined in Equation 23 and described in Figure 46. It can also be
estimated recursively from root to leaves.

ηout(t, sx) = P (s finished at t, from sx, zt+1, ...zT | at, ..., aT , λ) (23)

n x n x

n xp(s)

s

Figure 46: The ηout variable defines the probability that a state s exited at time t and
observations zt+1, ...zT were perceived and actions at, ..., aT taken.

1. If s is a child of the root.

ηout(t, sx) =
∑

s′n∈C
p(s)
n ∪C

p(s)
p

T (s′n|sx, at)β(p(s), s′n, t + 1, T ), t < T, p(s) = root (24)

ηout(T, sx) = 1.0 (25)

2. If s is not a child of the root and for t ≤ T , where T = N − 1.

ηout(t, sx) =

∑
p(s)x∈Xp(s)

T∑
k=t+1


 ∑

s′n∈C
p(s)
n ,∪C

p(s)
p

T (s′n|sx, at)β(p(s)x, s′n, t + 1, k)


 ηout(k, p(s)x)

+ T (p(s)x|sx, at)ηout(t, p(s)x)
(26)

which is the probability that state s, which is not a root child, was exited at time t
from exit state sx and then the observations zt+1...zT were produced. To calculate this
probability we need to consider all the lengths of observation sequences from t+1...T ,
including a zero length observation sequence that could have been produced by the
parent of s, p(s) before p(s) exits from exit state p(s)x.

Now we can calculate ξ in Equation 1 recursively from the root to the leaves of the tree.
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1. If s and s′ are children of the root p(s) = p(s)x = p(s)n

ξ(t, sx, s′n) =
α(p(s)n, sx, 1, t)T (s′n|sx, at)β(p(s)x, s′n, t + 1, T )

P (Z|A,λ)
, t < T (27)

ξ(T, sx, s′n) = 0

2. If s and s′ are not root children

ξ(t, sx, s′n) =

1
P (Z|A,λ)


 t∑

k=1

∑
p(s)n∈Np(s)

ηin(k, p(s)n) α(p(s)n, sx, k, t)


 T (s′n|sx, at)


 T∑

k=t+1

∑
p(s)x∈Xp(s)

β(p(s)x, s′n, t + 1, k) ηout(k, p(s)x)


 , t < T

(28)

ξ(T, sx, s′n) = 0

which calculates the ξ variable by considering all the possible times 1..t and entry
states p(s)n that the parent state of s, p(s) was entered and then at time t a transition
was made from child exit state sx to child entry state s′n and then consider all the
possible times from t + 1...T and all possible exit states p(s)x that p(s) was exited
from. The equation below shows the probability of going from the non-root child state
sx to the exit state p(s)x at time t.

ξ(t, sx, p(s)x) =
1

P (Z|A,λ)


 t∑

k=1

∑
p(s)n∈Np(s)

ηin(k, p(s)n) α(p(s)n, sx, k, t)




T (p(s)x|sx, at) ηout(t, p(s)x), t ≤ T

(29)

B.4 Computing χ

We can calculate the χ variable as follows:

1. If s is a child of the root p(s) = p(s)n = p(s)x

χ(1, p(s)n, sn) =
V (sn|p(s)n) β(p(s)x, sn, 1, T, s)

P (Z|A,λ)
(30)

2. Otherwise for 1 ≥ t ≤ T

χ(t, p(s)n, sn) =

ηin(t, p(s)n) V (sn|p(s)n)
P (Z|A,λ)

T∑
k=t

∑
p(s)x∈Xp(s)

β(p(s)x, sn, t, k) ηout(k, p(s)x)
(31)
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